Changes

Jump to navigation Jump to search
4 bytes added ,  21:18, 4 January 2016
no edit summary
Line 22: Line 22:  
[[file:predicting-reservoir-system-quality-and-performance_fig9-16.png|300px|thumb|{{figure number|1}}SEM microphotographs.]]
 
[[file:predicting-reservoir-system-quality-and-performance_fig9-16.png|300px|thumb|{{figure number|1}}SEM microphotographs.]]
   −
Using K<sub>a</sub> and Φ data separately to characterize reservoir rock quality is misleading. Consider the rocks shown in the SEM microphotographs in [[:file:predicting-reservoir-system-quality-and-performance_fig9-16.png|Figure 1]]. Flow unit 1 is a [[Wikipedia:Mesoporous material|mesoporous]], sucrosic dolomite. Its average Φ is 30% and average K<sub>a</sub> is 10 md. Flow unit 2 is a macroporous, oolitic limestone. Its average Φ is 10% and average K<sub>a</sub> is 10 md.
+
Using K<sub>a</sub> and Φ data separately to characterize reservoir rock quality is misleading. Consider the rocks shown in the SEM microphotographs in [[:file:predicting-reservoir-system-quality-and-performance_fig9-16.png|Figure 1]]. Flow unit 1 is a [[Wikipedia:Mesoporous material|mesoporous]], sucrosic [[dolomite]]. Its average Φ is 30% and average K<sub>a</sub> is 10 md. Flow unit 2 is a macroporous, oolitic limestone. Its average Φ is 10% and average K<sub>a</sub> is 10 md.
    
Initially, we might think that flow unit 1 is higher quality because it has three times more porosity and the same permeability as flow unit 2. However, in terms of fluid flow efficiency and storage, as shown by the K<sub>a</sub>/Φ ratio or r<sub>35</sub>, flow unit 2 is actually the better rock.
 
Initially, we might think that flow unit 1 is higher quality because it has three times more porosity and the same permeability as flow unit 2. However, in terms of fluid flow efficiency and storage, as shown by the K<sub>a</sub>/Φ ratio or r<sub>35</sub>, flow unit 2 is actually the better rock.

Navigation menu