Changes

Jump to navigation Jump to search
m
Line 6: Line 6:  
  | part    = Predicting the occurrence of oil and gas traps
 
  | part    = Predicting the occurrence of oil and gas traps
 
  | chapter = Predicting reservoir system quality and performance
 
  | chapter = Predicting reservoir system quality and performance
  | frompg  = 9-1
+
  | frompg  = 9-36
  | topg    = 9-156
+
  | topg    = 9-37
 
  | author  = Dan J. Hartmann, Edward A. Beaumont
 
  | author  = Dan J. Hartmann, Edward A. Beaumont
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch09/ch09.htm
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch09/ch09.htm
Line 24: Line 24:     
==Converting lab capillary pressure data==
 
==Converting lab capillary pressure data==
Follow the steps in the table below to convert P<sub>c</sub> to [[buoyancy pressure]], pore throat size (''r''), or hydrocarbon column height (''h''′). Assume water-wet conditions in the reservoir (γ = interfacial tension, Θ = contact angle).
+
Follow the steps in the table below to convert P<sub>c</sub> to [[buoyancy pressure]], pore throat size (''r''), or [[hydrocarbon column]] height (''h''′). Assume water-wet conditions in the reservoir (γ = interfacial tension, Θ = contact angle).
    
{| class = "wikitable"
 
{| class = "wikitable"
Line 32: Line 32:  
| 1
 
| 1
 
| Rescale P<sub>c</sub> from one lab system to a common technique (i.e., air–brine to air–mercury).  
 
| Rescale P<sub>c</sub> from one lab system to a common technique (i.e., air–brine to air–mercury).  
| <math>P_{\text{c system1}} = P_{\text{c system2}} (\frac{\gamma \cos \Theta \text{ of system1}}{\gamma \cos \Theta \text{ of system2}})</math>
+
| <math>P_{\text{c system1}} = P_{\text{c system2}} \left ( \frac{\gamma \cos \Theta \text{ of system1}}{\gamma \cos \Theta \text{ of system2}} \right )</math>
 
|-
 
|-
 
| 2
 
| 2
 
| Convert lab P<sub>c</sub> to reservoir P<sub>c</sub> (i.e., air– mercury to water–oil).
 
| Convert lab P<sub>c</sub> to reservoir P<sub>c</sub> (i.e., air– mercury to water–oil).
| P<sub>c</sub><sub>res</sub> = P<sub>c</sub><sub>lab</sub> (γcosΘ<sub>res</sub> /γcosΘ<sub>lab</sub> )
+
| <math>P_{\text{c res}} = P_{\text{c lab}} \left ( \frac{\gamma \cos \Theta_{\text{res}}}{\gamma \cos \Theta_{\text{lab}}} \right )</math>
 
|-
 
|-
 
| 3
 
| 3
 
| Convert reservoir P<sub>c</sub> to height ( ''h'' ′).
 
| Convert reservoir P<sub>c</sub> to height ( ''h'' ′).
| h′ = P<sub>c</sub><sub>res</sub> /(water gradient hydrocarbon gradient) <break> </break> Typical gradients in psi/ft: Water = 0.433 – 0.45, Oil = 0.33, Gas = 0.07 (range = 0.001–0.22)
+
| <math>h' = \frac{P_{\text{c res}}}{(\text{water gradient } - \text{ hydrocarbon gradient})}</math><br>
 +
Typical gradients in psi/ft:
 +
: Water = 0.433 – 0.45,  
 +
: Oil = 0.33,  
 +
: Gas = 0.07 (range = 0.001–0.22)
 
|-
 
|-
 
| 4
 
| 4
 
| Convert lab P<sub>c</sub> to pore throat radius ( ''r'' ) in microns.
 
| Convert lab P<sub>c</sub> to pore throat radius ( ''r'' ) in microns.
| r = –2γcosΘ/P<sub>c</sub><sub>lab</sub> or C(γcosΘ<sub>lab</sub> )/P<sub>c</sub><sub>lab</sub> where C is the constant 0.29
+
| <math>r = \frac{-2 \gamma \cos \Theta}{P_{\text{c lab}}} \text{ or } \frac{C ( \gamma \cos \Theta_{\text{lab}})}{P_\text{c lab}}</math><br>  
 +
where C is the constant 0.29
 
|}
 
|}
   Line 113: Line 118:  
[[Category:Predicting the occurrence of oil and gas traps]]  
 
[[Category:Predicting the occurrence of oil and gas traps]]  
 
[[Category:Predicting reservoir system quality and performance]]
 
[[Category:Predicting reservoir system quality and performance]]
 +
[[Category:Treatise Handbook 3]]

Navigation menu