Changes

Jump to navigation Jump to search
no edit summary
Line 61: Line 61:  
The tectonic setting and stratigraphic section are similar to the producing trend; therefore, the [[deformation]] features of the exposed structures can be used as analogs for producing structures to the south. The numbered ridge lines in the photo provide a set of natural serial cross sections through the structures ([[:file:exploring-for-structural-traps_fig20-13.png|Figure 10]]).
 
The tectonic setting and stratigraphic section are similar to the producing trend; therefore, the [[deformation]] features of the exposed structures can be used as analogs for producing structures to the south. The numbered ridge lines in the photo provide a set of natural serial cross sections through the structures ([[:file:exploring-for-structural-traps_fig20-13.png|Figure 10]]).
   −
[[:file:exploring-for-structural-traps_fig20-14.png|Figure 10]] shows structures in the upper plate of the Absaroka thrust fault on the south side of ridge line 4 in [[:file:exploring-for-structural-traps_fig20-12.png|Figure 9]]. The white outcrops in the valley in the left foreground are tightly folded Ordovician Bighorn dolomite.
+
[[:file:exploring-for-structural-traps_fig20-14.png|Figure 10]] shows structures in the upper plate of the Absaroka thrust fault on the south side of ridge line 4 in [[:file:exploring-for-structural-traps_fig20-12.png|Figure 9]]. The white [http://www.merriam-webster.com/dictionary/outcrop outcrops] in the valley in the left foreground are tightly folded Ordovician Bighorn dolomite.
    
==Prospect and location==
 
==Prospect and location==
Line 78: Line 78:  
These models were constructed of originally planar layers of limestone, sandstone, and granite. They were [[Deformation|deformed]] in a pressure vessel at an effective overburden pressure of 15 × 10<sup>3</sup> psi (1 × 10<sup>5</sup> kPa). The top view is a photomicrograph of a model that simulates a thrust ramp. The bottom view simulates the hanging-wall geometry produced by movement along a series of bedding-parallel and ramp segments of a thrust fault.
 
These models were constructed of originally planar layers of limestone, sandstone, and granite. They were [[Deformation|deformed]] in a pressure vessel at an effective overburden pressure of 15 × 10<sup>3</sup> psi (1 × 10<sup>5</sup> kPa). The top view is a photomicrograph of a model that simulates a thrust ramp. The bottom view simulates the hanging-wall geometry produced by movement along a series of bedding-parallel and ramp segments of a thrust fault.
   −
Data on deformation mechanisms, such as fractures and how they affect reservoir properties, are obtained by integrating outcrop fracture data and laboratory estimates of fracture aperture. This integration allows for a direct calculation of fracture [[porosity]] and fracture [[permeability]] for the reservoir.
+
Data on deformation mechanisms, such as fractures and how they affect reservoir properties, are obtained by integrating [http://www.merriam-webster.com/dictionary/outcrop outcrop] fracture data and laboratory estimates of fracture aperture. This integration allows for a direct calculation of fracture [[porosity]] and fracture [[permeability]] for the reservoir.
    
Examples of outcrop fracture-spacing data relevant to the carbonate section of Whitney Canyon field are shown in [[:file:exploring-for-structural-traps_fig20-17.png|Figure 14]]. The photograph shows fractures in the Ordovician Bighorn dolomite in outcrops in the valley seen in [[:file:exploring-for-structural-traps_fig20-14.png|Figure 11]]. (Note the inch-scale measuring tape stretched across the center of [[:file:exploring-for-structural-traps_fig20-17.png|Figure 14]].)
 
Examples of outcrop fracture-spacing data relevant to the carbonate section of Whitney Canyon field are shown in [[:file:exploring-for-structural-traps_fig20-17.png|Figure 14]]. The photograph shows fractures in the Ordovician Bighorn dolomite in outcrops in the valley seen in [[:file:exploring-for-structural-traps_fig20-14.png|Figure 11]]. (Note the inch-scale measuring tape stretched across the center of [[:file:exploring-for-structural-traps_fig20-17.png|Figure 14]].)
4,231

edits

Navigation menu