Changes

Jump to navigation Jump to search
no edit summary
Line 137: Line 137:  
This type of interaction between surface mudflow movements and contemporaneous faults may quite possibly play a large role in maintaining the continuing movement along these fault planes. [[:file:M31F25.jpg|Figure 10B]] shows details of the upper levels of a growth fault in the same vicinity.
 
This type of interaction between surface mudflow movements and contemporaneous faults may quite possibly play a large role in maintaining the continuing movement along these fault planes. [[:file:M31F25.jpg|Figure 10B]] shows details of the upper levels of a growth fault in the same vicinity.
   −
A feature commonly associated with growth faults and of extreme importance to petroleum trapping is the association of rollovers or reverse drag with the downthrown side of a growth fault ([[:file:M31F25.jpg|Figure 10A, B]]). These features are common on the contemporaneous faults presently active in the delta. Rollover structures tend to form soon after deposition of sediment on the downthrown side and do not require a considerable amount of overburden and weighting to form. Mass-moved material flowing downslope from higher levels on the delta front (sands, silts, and clays) contains high water and gas contents. It is speculated that, as sediment accumulates slightly more thickly on the downthrown side of the fault, early degassing and dewatering associated with movement along the fault take place. Pore waters and pore gases are permitted to escape upward in the zone of movement associated with the fault, thereby decreasing the volume of sediment and allowing an early change in density to occur nearly contemporaneously with the fault. As greater and greater amounts of sediment are added and overburden pressures become increasingly larger, this feature is then amplified and becomes more pronounced with time and depth.
+
A feature commonly associated with growth faults and of extreme importance to [[petroleum]] trapping is the association of rollovers or reverse drag with the downthrown side of a growth fault ([[:file:M31F25.jpg|Figure 10A, B]]). These features are common on the contemporaneous faults presently active in the delta. Rollover structures tend to form soon after deposition of sediment on the downthrown side and do not require a considerable amount of overburden and weighting to form. Mass-moved material flowing downslope from higher levels on the delta front (sands, silts, and clays) contains high water and gas contents. It is speculated that, as sediment accumulates slightly more thickly on the downthrown side of the fault, early degassing and dewatering associated with movement along the fault take place. Pore waters and pore gases are permitted to escape upward in the zone of movement associated with the fault, thereby decreasing the volume of sediment and allowing an early change in density to occur nearly contemporaneously with the fault. As greater and greater amounts of sediment are added and overburden pressures become increasingly larger, this feature is then amplified and becomes more pronounced with time and depth.
    
[[:file:M31F26.jpg|Figure 11]] illustrates through a summary diagram some of the major characteristics associated with subaqueous slump deposits. Although boring control and core control are limited in deeper offshore waters, enough foundation borings have penetrated some of the sequences to give a fairly good indication of the deposit types accumulating offshore on the downthrown sides of some slump fault features. In addition, numerous articles on Gulf Coast Tertiary sequences indicate the type of deposition associated with slump deposits. The upper right-hand diagram illustrates a vertical sequence commonly associated with offshore slump deposits. The first striking characteristic is the extreme variations in grain size. Sandy deposits generally occur as distinct isolated blocks showing both sharp base and sharp tops. Grain size depends on the source of the slump material, and in such a deltaic setting, sources are commonly distributary-mouth-bar deposits trapped on the downthrown sides of these slump features.
 
[[:file:M31F26.jpg|Figure 11]] illustrates through a summary diagram some of the major characteristics associated with subaqueous slump deposits. Although boring control and core control are limited in deeper offshore waters, enough foundation borings have penetrated some of the sequences to give a fairly good indication of the deposit types accumulating offshore on the downthrown sides of some slump fault features. In addition, numerous articles on Gulf Coast Tertiary sequences indicate the type of deposition associated with slump deposits. The upper right-hand diagram illustrates a vertical sequence commonly associated with offshore slump deposits. The first striking characteristic is the extreme variations in grain size. Sandy deposits generally occur as distinct isolated blocks showing both sharp base and sharp tops. Grain size depends on the source of the slump material, and in such a deltaic setting, sources are commonly distributary-mouth-bar deposits trapped on the downthrown sides of these slump features.

Navigation menu