| Geometrical patterns that allow depositional sedimentary environments to be recognized can sometimes be picked out by seismic [[facies analysis]].<ref name=Posamentier_2004 /> Seismic facies analysis involves the analysis of seismic character to help predict the depositional environment. One method uses a computer-based neural network analysis of waveform character within a window of seismic data. A map is made showing the areal distribution of the waveform character classes, and this can be correlated with lithofacies variation. | | Geometrical patterns that allow depositional sedimentary environments to be recognized can sometimes be picked out by seismic [[facies analysis]].<ref name=Posamentier_2004 /> Seismic facies analysis involves the analysis of seismic character to help predict the depositional environment. One method uses a computer-based neural network analysis of waveform character within a window of seismic data. A map is made showing the areal distribution of the waveform character classes, and this can be correlated with lithofacies variation. |
− | Semblance and spectral decomposition methods were used to pick out individual macroforms in Pleistocene deltaic sediments in the Gulf of Mexico.<ref name=Lopezetal_1997>Lopez, J. A., G. Partyka, N. L. Haskell, and S. E. Nissen, 1997, Identification of deltaic facies with 3-D seismic coherency and the spectral decomposition cube: A study from South Marsh Island Area, Gulf of Mexico: Gulf Coast Association of Geological Societies Transactions, v. 47, p. 305–309.</ref> Spectral decomposition is a way of breaking down a seismic trace into its discrete component frequencies.<ref name=Partykaetal_1999>Partyka, G., J. Gridley, and J. Lopez, 1999, Interpretational applications of spectral decomposition in reservoir characterization: The Leading Edge, v. 18, no. 3, p. 353–360.</ref> Certain stratigraphic features can be picked out because they are more sensitively tuned to specific frequencies although they may not be obvious in the seismic trace as a whole. | + | Semblance and spectral decomposition methods were used to pick out individual macroforms in Pleistocene deltaic sediments in the [[Gulf of Mexico]].<ref name=Lopezetal_1997>Lopez, J. A., G. Partyka, N. L. Haskell, and S. E. Nissen, 1997, Identification of deltaic facies with 3-D seismic coherency and the spectral decomposition cube: A study from South Marsh Island Area, Gulf of Mexico: Gulf Coast Association of Geological Societies Transactions, v. 47, p. 305–309.</ref> Spectral decomposition is a way of breaking down a seismic trace into its discrete component frequencies.<ref name=Partykaetal_1999>Partyka, G., J. Gridley, and J. Lopez, 1999, Interpretational applications of spectral decomposition in reservoir characterization: The Leading Edge, v. 18, no. 3, p. 353–360.</ref> Certain stratigraphic features can be picked out because they are more sensitively tuned to specific frequencies although they may not be obvious in the seismic trace as a whole. |