Changes

Jump to navigation Jump to search
481 bytes added ,  20:06, 2 February 2022
m
Line 6: Line 6:  
  | part    = Predicting the occurrence of oil and gas traps
 
  | part    = Predicting the occurrence of oil and gas traps
 
  | chapter = Exploring for structural traps
 
  | chapter = Exploring for structural traps
  | frompg  = 20-1
+
  | frompg  = 20-20
  | topg    = 20-70
+
  | topg    = 20-21
 
  | author  = R.A. Nelson, T.L. Patton, S. Serra
 
  | author  = R.A. Nelson, T.L. Patton, S. Serra
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch20/ch20.htm
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch20/ch20.htm
Line 14: Line 14:  
  | isbn    = 0-89181-602-X
 
  | isbn    = 0-89181-602-X
 
}}
 
}}
 +
 +
[[file:Remote_Sensing_Illustration.jpg|thumb|300px|[https://en.wikipedia.org/wiki/Remote_sensing Remote sensing] illustration. Courtesy Wikipedia.]]
 
==Information provided==
 
==Information provided==
   −
Remote sensing data such as satellite imagery can help us examine regional structural fabrics, patterns, and contacts. Detailed mapping can be done using high-resolution satellite imagery and both high-altitude and low-level photography. The infrared bands on satellite imagery minimize the blurring effects of haze. Radar imagery removes the effects of haze and clouds.
+
Remote sensing data such as [[satellite imagery]] can help us examine regional [[Structural patterns|structural fabrics, patterns, and contacts]]. Detailed mapping can be done using high-resolution satellite imagery and both [[High-altitude photography|high-altitude]] and [[low-level photography]]. The [[infrared]] bands on satellite imagery minimize the blurring effects of haze. [[Radar imagery]] removes the effects of haze and clouds.
    
==Types==
 
==Types==
Line 30: Line 32:  
{| class = "wikitable"
 
{| class = "wikitable"
 
|-
 
|-
! Type
+
! Type || Single Scene Coverage (km) || Resolution (m)
! Single Scene Coverage (km)
  −
! Resolution (m)
   
|-
 
|-
| Landsat MSS
+
| Landsat MSS || 185 × 170 || 80
| 185 × 170
  −
| 80
   
|-
 
|-
| Landsat TM
+
| Landsat TM || 185 × 170 || 30
| 185 × 170
  −
| 30
   
|-
 
|-
| SPOT
+
| SPOT || 60 × 60 || 20 (color), 10 (b&w)
| 60 × 60
  −
| 20 (color), 10 (b&w)
   
|-
 
|-
| Soyuz
+
| Soyuz || 40 × 40 || 2
| 40 × 40
  −
| 2
   
|}
 
|}
   Line 62: Line 54:  
{| class = "wikitable"
 
{| class = "wikitable"
 
|-
 
|-
! Type of Imagery
+
! Type of Imagery || Sources
! Sources
   
|-
 
|-
 
| High-altitude photography
 
| High-altitude photography
| *  Manned space mission photographs  *  U-2 photographs  *  National High Altitude Photography (NHAP)
+
|
 +
*  Manned space mission photographs   
 +
*  U-2 photographs   
 +
*  National High Altitude Photography (NHAP)
    
|-
 
|-
 
| Low-level aerial photographs
 
| Low-level aerial photographs
| *  Black and white or color, vertical or oblique photographs  *  Infrared (IR) photographs
+
|
 +
*  Black and white or color, vertical or oblique photographs   
 +
*  Infrared (IR) photographs
    
|-
 
|-
 
| Side Looking Airborne Radar (SLAR)
 
| Side Looking Airborne Radar (SLAR)
| *  Aircraft-based, low-level radar imagery  *  Satellite or shuttle-based radar imagery
+
|
 
+
*  Aircraft-based, low-level radar imagery   
 +
*  Satellite or shuttle-based radar imagery
 
|}
 
|}
    
==Where to use it==
 
==Where to use it==
Remote sensing data are useful in all structural terranes but are especially important in remote areas where local topographic and geological control is absent or unobtainable.
+
Remote sensing data are useful in all structural terranes but are especially important in remote areas where local [http://dictionary.reference.com/browse/topography topographicand geological control is absent or unobtainable.
   −
In hydrocarbon exploration, remote sensing data is primarily used to (1) examine and map the surface geology in and around a concession area and (2) check terrain conditions and access routes for geologic fieldwork, seismic surveys, well locations, pipeline routes, and environmental hazards
+
In hydrocarbon exploration, remote sensing data is primarily used to (1) examine and map the surface geology in and around a concession area and (2) check terrain conditions and access routes for geologic fieldwork, [[Seismic data|seismic surveys]], well locations, pipeline routes, and environmental hazards.
    
==Examples of use==
 
==Examples of use==
* Sabins, F., F., Jr., 1998b, Remote sensing for petroleum exploration, part 2: [[case histories]]: The Leading Edge, vol. 17, p. 623–626., 10., 1190/1., 1438015
+
* Sabins, F. F. Jr., 1998b, Remote sensing for petroleum exploration, part 2: [[case histories]]: The Leading Edge, vol. 17, p. 623–626, DOI: [http://library.seg.org/doi/abs/10.1190/1.1438015 10.1190/1.1438015].
* Prost, G., L., 1994, Remote Sensing for Geologists: A Guide to Image Interpretation: Gordon and Breach Science Publishers, 326 p.
+
* Prost, G. L. 1994, Remote Sensing for Geologists: A Guide to Image Interpretation: Gordon and Breach Science Publishers, 326 p.
* Insley, M., W., Murphy, F., X., Naylor, D., Critchley, M., 1996, The use of satellite imagery in the validation and verification of structural interpretations for hydrocarbon exploration in Pakistan and Yemen, in Buchanan, P., G., Nieuwland, D., A., eds., Modern Developments in Structural Interpretation, Validation and Modeling: Geological Society of London Special Publication 99, p. 321–343.
+
* Insley, M. W., F. X. Murphy, D. Naylor, and M. Critchley, 1996, The use of satellite imagery in the validation and verification of structural interpretations for hydrocarbon exploration in Pakistan and Yemen, ''in'' P. G. Buchanan and D. A. Nieuwland, eds., Modern Developments in Structural Interpretation, Validation and Modeling: Geological Society of London Special Publication 99, p. 321–343.
* Halbouty, M., T., 1980, [http://archives.datapages.com/data/bulletns/1980-81/data/pg/0064/0001/0000/0008.htm Geologic significance of Landsat data for 15 giant oil and gas fields]: AAPG Bulletin, vol. 64, p. 8–36.
+
* Halbouty, M. T., 1980, [http://archives.datapages.com/data/bulletns/1980-81/data/pg/0064/0001/0000/0008.htm Geologic significance of Landsat data for 15 giant oil and gas fields]: AAPG Bulletin, vol. 64, p. 8–36.
* Foster, N., H., Beaumont, E., A., eds., 1992, Photogeology and photogeomorphology: AAPG Treatise of Petroleum Geology Reprint Series 18, 555 p.
+
* Foster, N. H., and E. A. Beaumont, eds., 1992, Photogeology and photogeomorphology: AAPG Treatise of Petroleum Geology Reprint Series 18, 555 p.
* Beauchamp, W., Barazangi, M., Demnati, A., El Alji, M., 1996, [http://archives.datapages.com/data/bulletns/1994-96/data/pg/0080/0009/1450/1459.htm Intracontinental rifting and inversion: Missour Basin and Atlas Mountains, Morocco]: AAPG Bulletin, vol. 80, p. 1459–1482.
+
* Beauchamp, W., M. Barazangi, A. Demnati, and M. El Alji, 1996, [http://archives.datapages.com/data/bulletns/1994-96/data/pg/0080/0009/1450/1459.htm Intracontinental rifting and inversion: Missour Basin and Atlas Mountains, Morocco]: AAPG Bulletin, vol. 80, p. 1459–1482.
* Allenby, R., J., 1987, Origin of the Bolivian Andean orocline: a geologic study utilizing Landsat and Shuttle Imaging Radar: Tectonophysics, vol. 142, p. 137–154., 10., 1016/0040-1951(87)90119-3
+
* Allenby, R. J., 1987, Origin of the Bolivian Andean orocline: a geologic study utilizing Landsat and Shuttle Imaging Radar: Tectonophysics, vol. 142, p. 137–154, DOI:[http://www.sciencedirect.com/science/article/pii/0040195187901193 10.1016/0040-1951(87)90119-3].
* Sosromihardjo, S., P., C., 1988, Structural analysis of the north Sumatra Basin with emphasis on synthetic aperture radar data: Proceedings of the Indonesian Petroleum Association, p. 187–209.
+
* Sosromihardjo, S. P. C., 1988, Structural analysis of the north Sumatra Basin with emphasis on synthetic aperture radar data: Proceedings of the Indonesian Petroleum Association, p. 187–209.
* Sabins, F., F., Jr., 1998a, Remote sensing for petroleum exploration, part 1: overview of imaging systems: The Leading Edge, vol. 17, p. 467–470., 10., 1190/1., 1437991
+
* Sabins, F. F. Jr., 1998a, Remote sensing for petroleum exploration, part 1: overview of imaging systems: The Leading Edge, vol. 17, p. 467–470, DOI: [http://library.seg.org/doi/abs/10.1190/1.1437991 10.1190/1.1437991].
* Sabins, F., F., Jr., 1987, Remote Sensing, Principles and Interpretation: New York, W., H. Freeman Company, 449 p.
+
* Sabins, F. F. Jr., 1987, Remote Sensing, Principles and Interpretation: New York, W. H. Freeman Company, 449 p.
    
==See also==
 
==See also==
* [[Scoping techniques and tools]]
+
* [[Frontier reconnaissance techniques and tools]]
 
* [[Plate tectonic studies]]
 
* [[Plate tectonic studies]]
 
* [[Potential fields]]
 
* [[Potential fields]]
* [[Regional maps and cross sections]]
   
* [[Structural geology fieldwork]]
 
* [[Structural geology fieldwork]]
 
* [[Natural analogs]]
 
* [[Natural analogs]]
Line 110: Line 106:  
[[Category:Predicting the occurrence of oil and gas traps]]  
 
[[Category:Predicting the occurrence of oil and gas traps]]  
 
[[Category:Exploring for structural traps]]
 
[[Category:Exploring for structural traps]]
 +
[[Category:Treatise Handbook 3]]

Navigation menu