Changes

Jump to navigation Jump to search
163 bytes added ,  14:50, 20 August 2015
no edit summary
Line 17: Line 17:  
A significant proportion of the world's oil reserves are found in carbonate reservoirs. Many of these are located in the Middle East, Libya, Russia, Kazakhstan, and North America. Some very large oil fields have carbonate reservoirs, including the largest conventional oil field in the world, the Ghawar field of Saudi Arabia.
 
A significant proportion of the world's oil reserves are found in carbonate reservoirs. Many of these are located in the Middle East, Libya, Russia, Kazakhstan, and North America. Some very large oil fields have carbonate reservoirs, including the largest conventional oil field in the world, the Ghawar field of Saudi Arabia.
   −
The reason for the very large size of some carbonate reservoirs is not surprising when one considers the sheer scale of even modern-day carbonate settings. The shallow submerged platform area of the Bahamas extends more than 400 km (248 mi) north–south and covers an area of about 125,000 km2 (48,263 mi2). The size of individual sediment bodies on the Bahama Banks can be impressive too (Figure 196). The Joulters Cay ooid shoal is a single carbonate sand body with a mobile border 25 km (15 mi) long and between 0.5 and 2 km (0.3 and 1.2 mi) wide (Major et al., 1996).
+
The reason for the very large size of some carbonate reservoirs is not surprising when one considers the sheer scale of even modern-day carbonate settings. The shallow submerged platform area of the Bahamas extends more than 400 km (248 mi) north–south and covers an area of about 125,000 km2 (48,263 mi2). The size of individual sediment bodies on the Bahama Banks can be impressive too ([[:File:M91FG196.JPG|Figure 1]]). The Joulters Cay ooid shoal is a single carbonate sand body with a mobile border 25 km (15 mi) long and between 0.5 and 2 km (0.3 and 1.2 mi) wide (Major et al., 1996).
    
[[File:M91FG196.JPG|thumb|300px|{{figure number|1}}Ooid shoal, Bahamas; the bottom edge of the photograph represents a 4.5-km (2.7 mi)-wide transect. The lower inset is an illustration of a cliff exposure of laterally accreting (shingled) oolites from the Lower Cretaceous of Northern Mexico (from Osleger, 2004). Reprinted with permission from the AAPG.]]
 
[[File:M91FG196.JPG|thumb|300px|{{figure number|1}}Ooid shoal, Bahamas; the bottom edge of the photograph represents a 4.5-km (2.7 mi)-wide transect. The lower inset is an illustration of a cliff exposure of laterally accreting (shingled) oolites from the Lower Cretaceous of Northern Mexico (from Osleger, 2004). Reprinted with permission from the AAPG.]]
Line 56: Line 56:  
==Geometry==
 
==Geometry==
 
[[File:M91FG67.JPG|thumb|300px|{{figure number|2}}Shingled geometries are common in certain depositional environments and can result in a number of isolated reservoir segments. However, this type of geometry is easy to overlook, and a layer-cake geometry is often erroneously imposed (from Sneider and Sneider, 2001). Reprinted with permission from the AAPG.]]
 
[[File:M91FG67.JPG|thumb|300px|{{figure number|2}}Shingled geometries are common in certain depositional environments and can result in a number of isolated reservoir segments. However, this type of geometry is easy to overlook, and a layer-cake geometry is often erroneously imposed (from Sneider and Sneider, 2001). Reprinted with permission from the AAPG.]]
 +
[[File:M91FG197.JPG|thumb|300px|{{figure number|3}}High-frequency carbonate cycle on a meter scale from the Mississippian Madison Formation in the Wind River Basin of Wyoming (after Westphal et al., 2004). Reprinted with permission from the AAPG.]]
    
Carbonate sediments tend to show a ribbon-like geometry and are less commonly developed as widespread sheets. Examples of both geometries are shown by two of the major carbonate reservoir intervals in the Middle East (Ehrenberg et al., 2007). Sediments of the Permian–Triassic Khuff Formation were deposited on a very low relief shelf, sheltered from the open ocean by a barrier reef. These show a layer-cake geometry consisting of interbedded mudstones and fine-grained grainstones (Alsharhan, 2006). By contrast, sedimentation in the Jurassic Arab Formation occurred on a shelf differentiated into shallow shoals and intrashelf basins. These exhibit a progradational geometry (Meyer and Price, 1992).
 
Carbonate sediments tend to show a ribbon-like geometry and are less commonly developed as widespread sheets. Examples of both geometries are shown by two of the major carbonate reservoir intervals in the Middle East (Ehrenberg et al., 2007). Sediments of the Permian–Triassic Khuff Formation were deposited on a very low relief shelf, sheltered from the open ocean by a barrier reef. These show a layer-cake geometry consisting of interbedded mudstones and fine-grained grainstones (Alsharhan, 2006). By contrast, sedimentation in the Jurassic Arab Formation occurred on a shelf differentiated into shallow shoals and intrashelf basins. These exhibit a progradational geometry (Meyer and Price, 1992).
   −
Carbonate sediments with ribbon geometries show a complex lateral facies progression in map view. A tendency for lateral accretion in successive cycles creates a subtle shingled geometry, which can make accurate correlation difficult (see Chapter 10, this publication, and [[Figure 67]]). For example, laterally accreting grainstones show a shingled geometry on a kilometer scale in Albian carbonates in northern Mexico (Figure 196) (Osleger et al., 2004). It can be a mistake to fit a layer-cake geometry to these systems because this results in reservoir models where lateral connectivity is predicted to be more extensive than is the case (Tinker, 1996). Facies belts may be difficult to define as lithofacies variation in carbonates is frequently transitional rather than sharp.
+
Carbonate sediments with ribbon geometries show a complex lateral facies progression in map view. A tendency for lateral accretion in successive cycles creates a subtle shingled geometry, which can make accurate correlation difficult (see Chapter 10, this publication, and [[:File:M91FG67.JPG|Figure 2]]). For example, laterally accreting grainstones show a shingled geometry on a kilometer scale in Albian carbonates in northern Mexico ([[:File:M91FG196.JPG|Figure 1]]) (Osleger et al., 2004). It can be a mistake to fit a layer-cake geometry to these systems because this results in reservoir models where lateral connectivity is predicted to be more extensive than is the case (Tinker, 1996). Facies belts may be difficult to define as lithofacies variation in carbonates is frequently transitional rather than sharp.
    
Carbonate sedimentation is very rapid and the build-up of carbonate sediment can exceed sea-level rise in a short period of time. For example, Neumann and Land (1975) estimated that the carbonate sediment accumulation rate in the Bight of Abaco in the Bahamas is 120 mm (5 in.) per thousand years. This is about three times the estimated subsidence rate of 38 mm (1.4 in.) per thousand years. The phrase carbonate factory is commonly used to describe the manner in which large volumes of sediment are produced on tropical shelfs.
 
Carbonate sedimentation is very rapid and the build-up of carbonate sediment can exceed sea-level rise in a short period of time. For example, Neumann and Land (1975) estimated that the carbonate sediment accumulation rate in the Bight of Abaco in the Bahamas is 120 mm (5 in.) per thousand years. This is about three times the estimated subsidence rate of 38 mm (1.4 in.) per thousand years. The phrase carbonate factory is commonly used to describe the manner in which large volumes of sediment are produced on tropical shelfs.
   −
Vertically, carbonates can be characterized by high-frequency stacking, with shoaling-upward cycles a few meters thick. Westphal et al. (2004) described high-frequency depositional cycles from the Mississippian Madison Formation in the Wind River Basin of Wyoming. The cycles occur over a meter-scale thickness and consist of a lower transgressive and an upper regressive hemicycle. The transgressive hemicycle is dominated by tidal flat sediments (laminated mudstone and wackestone) and subtidal deposits (e.g., stromatilites). The regressive hemicycle comprises high-energy carbonate sand-shoal facies (Figure 197).
+
Vertically, carbonates can be characterized by high-frequency stacking, with shoaling-upward cycles a few meters thick. Westphal et al. (2004) described high-frequency depositional cycles from the Mississippian Madison Formation in the Wind River Basin of Wyoming. The cycles occur over a meter-scale thickness and consist of a lower transgressive and an upper regressive hemicycle. The transgressive hemicycle is dominated by tidal flat sediments (laminated mudstone and wackestone) and subtidal deposits (e.g., stromatilites). The regressive hemicycle comprises high-energy carbonate sand-shoal facies ([[:File:M91FG197.JPG|Figure 3]]).
 
  −
[[File:M91FG197.JPG|thumb|300px|{{figure number|3}}High-frequency carbonate cycle on a meter scale from the Mississippian Madison Formation in the Wind River Basin of Wyoming (after Westphal et al., 2004). Reprinted with permission from the AAPG.]]
      
High-frequency upward-shoaling cycles commonly comprise individual hydraulic or flow units within carbonate reservoirs (Kerans et al., 1994). Porosity variation in carbonate reservoirs occurs at the scale of high-frequency cycles (Ehrenberg, 2004). Larger scale trends in porosity variation can also occur at the systems tract or sequence level (Ehrenberg et al., 2006).
 
High-frequency upward-shoaling cycles commonly comprise individual hydraulic or flow units within carbonate reservoirs (Kerans et al., 1994). Porosity variation in carbonate reservoirs occurs at the scale of high-frequency cycles (Ehrenberg, 2004). Larger scale trends in porosity variation can also occur at the systems tract or sequence level (Ehrenberg et al., 2006).
Line 97: Line 96:     
==Organic build-ups including reefs==
 
==Organic build-ups including reefs==
 +
[[File:M91FG198.JPG|thumb|300px|{{figure number|4}}Barrier reef, Bahamas. The back reef between the barrier reef and the shoreline is 700 m (2296 ft) wide.]]
 +
 
Organic build-ups and reefs can be excellent reservoirs where the primary porosity has been preserved and is not occluded by internal sediments and secondary cements. They have the highest recovery factors among carbonate sediments according to Sun and Sloan (1993). Vertical permeability is typically good, and large pore systems are common in the reef core and in the near reef facies.
 
Organic build-ups and reefs can be excellent reservoirs where the primary porosity has been preserved and is not occluded by internal sediments and secondary cements. They have the highest recovery factors among carbonate sediments according to Sun and Sloan (1993). Vertical permeability is typically good, and large pore systems are common in the reef core and in the near reef facies.
    
Major reef-forming organisms at various periods in geological time have included, amongst others, corals, algae, stromatoporoids, and rudist bivalves. Four main periods of reef reservoir formation have been described by Kiessling et al. (1999). These are the Silurian to Late Permian, the Late Jurassic, the middle Cretaceous, and the Miocene. Late Middle–Late Devonian reef reservoirs are particularly common worldwide.
 
Major reef-forming organisms at various periods in geological time have included, amongst others, corals, algae, stromatoporoids, and rudist bivalves. Four main periods of reef reservoir formation have been described by Kiessling et al. (1999). These are the Silurian to Late Permian, the Late Jurassic, the middle Cretaceous, and the Miocene. Late Middle–Late Devonian reef reservoirs are particularly common worldwide.
   −
Barrier reefs form thick massive sheets or ribbons parallel to the shoreline (Figure 198). Some of these can be very long, up to many tens of kilometers in length. The reef is the result of the growth of the calcareous framework created by the reef-forming organisms. This framework is interspersed with sands, silts, and muds that have formed from the erosion of the reef by biological activity and the occasional storm. The reefs themselves can act as a source of sediment, which may either be transported landward or seaward. The back reef can show impressive areas of skeletal sand deposition up to several kilometers wide. Localized patch reefs are also found here. Reef aprons form seaward from the reef and are composed of silt to boulder-size debris, derived from the reef front. The reef apron sediments can be stabilized or encrusted by in-situ fore reef biota such as foraminifera, sponges, or algae.
+
Barrier reefs form thick massive sheets or ribbons parallel to the shoreline ([[:File:M91FG198.JPG|Figure 4]]). Some of these can be very long, up to many tens of kilometers in length. The reef is the result of the growth of the calcareous framework created by the reef-forming organisms. This framework is interspersed with sands, silts, and muds that have formed from the erosion of the reef by biological activity and the occasional storm. The reefs themselves can act as a source of sediment, which may either be transported landward or seaward. The back reef can show impressive areas of skeletal sand deposition up to several kilometers wide. Localized patch reefs are also found here. Reef aprons form seaward from the reef and are composed of silt to boulder-size debris, derived from the reef front. The reef apron sediments can be stabilized or encrusted by in-situ fore reef biota such as foraminifera, sponges, or algae.
 
  −
[[File:M91FG198.JPG|thumb|300px|{{figure number|4}}Barrier reef, Bahamas. The back reef between the barrier reef and the shoreline is 700 m (2296 ft) wide.]]
      
Barrier reef reservoirs are found in major oil fields such as the Oligocene to upper Eocene Kirkuk field of Iraq or the Lower Cretaceous fields found in the Golden Lane of Mexico (Viniegra-O and Castillo-Tejero, 1970).
 
Barrier reef reservoirs are found in major oil fields such as the Oligocene to upper Eocene Kirkuk field of Iraq or the Lower Cretaceous fields found in the Golden Lane of Mexico (Viniegra-O and Castillo-Tejero, 1970).
Line 110: Line 109:     
==Grainstone shoals on shelves==
 
==Grainstone shoals on shelves==
Grainstone shoals form large elongate sheets that can extend for tens of kilometers in length (Figure 196). They are commonly found on the seaward edges of banks, platforms, and shelves (Halley et al., 1983). The grainstone shoals are composed of sand-size grains, which can be skeletal or non-skeletal in origin. The latter includes ooids. Ooids are coated grains with a calcareous outer cortex and nuclei that are variable in composition (Tucker and Wright, 1990). Oolites are rocks formed from ooids. Where oolites are relatively uncemented and not too deeply buried, they can form world-class productive intervals such as in the Jurassic Arab-D reservoirs of the Middle East. However, oolites can undergo cementation such that the interparticle volume is pervasively cemented, whereas the ooids dissolve out to form oomoldic porosity. The ooids are typically poorly connected. One example, described from the Upper Jurassic Smackover Formation in Arkansas and Louisiana, shows 30% porosity but only one millidarcy or less permeability (Halley et al., 1983). Grainstone shoals are known to accrete laterally as a series of shingled units that may be compartmentalized by muddy barriers (Sneider and Sneider, 2000). Minor lateral heterogeneity occurs where tidal channels cut the ooid shoals.
+
Grainstone shoals form large elongate sheets that can extend for tens of kilometers in length ([[:File:M91FG196.JPG|Figure 1]]). They are commonly found on the seaward edges of banks, platforms, and shelves (Halley et al., 1983). The grainstone shoals are composed of sand-size grains, which can be skeletal or non-skeletal in origin. The latter includes ooids. Ooids are coated grains with a calcareous outer cortex and nuclei that are variable in composition (Tucker and Wright, 1990). Oolites are rocks formed from ooids. Where oolites are relatively uncemented and not too deeply buried, they can form world-class productive intervals such as in the Jurassic Arab-D reservoirs of the Middle East. However, oolites can undergo cementation such that the interparticle volume is pervasively cemented, whereas the ooids dissolve out to form oomoldic porosity. The ooids are typically poorly connected. One example, described from the Upper Jurassic Smackover Formation in Arkansas and Louisiana, shows 30% porosity but only one millidarcy or less permeability (Halley et al., 1983). Grainstone shoals are known to accrete laterally as a series of shingled units that may be compartmentalized by muddy barriers (Sneider and Sneider, 2000). Minor lateral heterogeneity occurs where tidal channels cut the ooid shoals.
    
==Subtidal and intertidal complexes==
 
==Subtidal and intertidal complexes==
The shelf interior in carbonate systems commonly shoals to a tidal flat environment that may be extensive in area (Figure 199). The highest porosities and permeabilities are found in the subtidal to intertidal facies with the best reservoir quality in tidal channel sediments. Supratidal sediments show the poorest reservoir quality and are typically barriers to vertical flow (Shinn, 1983). In arid environments, supratidal sabkha may be found. The evaporites can act as internal seals (Wilson, 1980).
+
[[File:M91FG199.JPG|thumb|300px|{{figure number|5}}The upper photograph shows a Carbonate tidal flat on Andros Island, Bahamas. The tidal channel is about 150 m (492 ft) wide at the bottom of the photograph. The lower diagram shows three tidal flat reservoir cycles in the Permian San Andres dolomite of the northern Delaware basin in New Mexico and Texas (after Shinn, 1983). Repeated transgression and regression create cycles of tidal flat reservoirs, each sealed by impermeable anhydritic supratidal facies toward the north. Reprinted with permission from the AAPG.]]
   −
[[File:M91FG199.JPG|thumb|300px|{{figure number|5}}The upper photograph shows a Carbonate tidal flat on Andros Island, Bahamas. The tidal channel is about 150 m (492 ft) wide at the bottom of the photograph. The lower diagram shows three tidal flat reservoir cycles in the Permian San Andres dolomite of the northern Delaware basin in New Mexico and Texas (after Shinn, 1983). Repeated transgression and regression create cycles of tidal flat reservoirs, each sealed by impermeable anhydritic supratidal facies toward the north. Reprinted with permission from the AAPG.]]
+
The shelf interior in carbonate systems commonly shoals to a tidal flat environment that may be extensive in area ([[:File:M91FG199.JPG|Figure 5]]). The highest porosities and permeabilities are found in the subtidal to intertidal facies with the best reservoir quality in tidal channel sediments. Supratidal sediments show the poorest reservoir quality and are typically barriers to vertical flow (Shinn, 1983). In arid environments, supratidal sabkha may be found. The evaporites can act as internal seals (Wilson, 1980).
    
Tidal flat mudstones can be extensively dolomitized to form significant reservoir intervals. Examples of this are found in reservoirs of the Ordovician Ellenburger Formation in the United States, the Ordovician Red River Formation of the Williston basin, the Permian Basin carbonates of Texas, and the Cretaceous offshore of west Africa.
 
Tidal flat mudstones can be extensively dolomitized to form significant reservoir intervals. Examples of this are found in reservoirs of the Ordovician Ellenburger Formation in the United States, the Ordovician Red River Formation of the Williston basin, the Permian Basin carbonates of Texas, and the Cretaceous offshore of west Africa.
Line 129: Line 128:     
==Chalk==
 
==Chalk==
 +
[[File:M91FG200.JPG|thumb|300px|{{figure number|6}}Redeposited chalk provides the main reservoir intervals in chalk fields. Resedimentation processes include sliding, slumping, debris flows, turbidity currents, and creep (from Surlyk et al., 2003). Reprinted with permission from the Geological Society.]]
 +
 
Chalk is very fine-grained carbonate sediment, comprising skeletal calcitic debris of algae platelets. Porosity in chalk can be high, sometimes as high as 40–50%. Nevertheless, given the very fine-grained nature of the rock, permeabilities are low; 1–7 md is typical of the productive intervals. Factors influencing porosity preservation in chalk are overpressure, early oil migration, burial depth, chalk lithofacies, mud content, and grain size (Scholle, 1977; Nygaard et al., 1983; D'Heur, 1986; Brasher and Vagle, 1996). A correlation is found between the clay content of the chalk and the degradation of reservoir quality; clay hinders early lithification. As a result, clay-rich chalks are less rigid and will tend to undergo more compaction (Kennedy, 1987). It is a common pattern in chalk oil fields to find the highest porosity in the crest of the field, decreasing incrementally toward the oil-water contact (D'Heur, 1986). This character may result from the race for space between oil migration and cementing fluids (see Chapter 12, this publication). The permeability in the water leg can be so poor that chalk fields are unlikely to have significant aquifers.
 
Chalk is very fine-grained carbonate sediment, comprising skeletal calcitic debris of algae platelets. Porosity in chalk can be high, sometimes as high as 40–50%. Nevertheless, given the very fine-grained nature of the rock, permeabilities are low; 1–7 md is typical of the productive intervals. Factors influencing porosity preservation in chalk are overpressure, early oil migration, burial depth, chalk lithofacies, mud content, and grain size (Scholle, 1977; Nygaard et al., 1983; D'Heur, 1986; Brasher and Vagle, 1996). A correlation is found between the clay content of the chalk and the degradation of reservoir quality; clay hinders early lithification. As a result, clay-rich chalks are less rigid and will tend to undergo more compaction (Kennedy, 1987). It is a common pattern in chalk oil fields to find the highest porosity in the crest of the field, decreasing incrementally toward the oil-water contact (D'Heur, 1986). This character may result from the race for space between oil migration and cementing fluids (see Chapter 12, this publication). The permeability in the water leg can be so poor that chalk fields are unlikely to have significant aquifers.
    
Chalk reservoirs can show strong permeability layering. Pelagic chalk is usually non-net reservoir although under favorable circumstances it can be productive (Megson and Tygesen, 2005). Pelagic or autochthonous chalk results from the slow settling of sediment on the sea floor. Pervasive early cementation and extensive bioturbation significantly reduce the porosity and permeability from an early stage.
 
Chalk reservoirs can show strong permeability layering. Pelagic chalk is usually non-net reservoir although under favorable circumstances it can be productive (Megson and Tygesen, 2005). Pelagic or autochthonous chalk results from the slow settling of sediment on the sea floor. Pervasive early cementation and extensive bioturbation significantly reduce the porosity and permeability from an early stage.
   −
Pelagic chalk on the seabed is easily disturbed and remobilized. Clean chalk lacks any significant sediment cohesion as it has no unbalanced interparticle electric charges or platy interlocking grains to hold it together (Bramwell et al., 1999). Processes tending to redeposit chalk include debris flows, turbidity currents, slumps, and slides (Figure 200) (Kennedy, 1987).
+
Pelagic chalk on the seabed is easily disturbed and remobilized. Clean chalk lacks any significant sediment cohesion as it has no unbalanced interparticle electric charges or platy interlocking grains to hold it together (Bramwell et al., 1999). Processes tending to redeposit chalk include debris flows, turbidity currents, slumps, and slides ([[:File:M91FG200.JPG|Figure 6]]) (Kennedy, 1987).
 
  −
[[File:M91FG200.JPG|thumb|300px|{{figure number|6}}Redeposited chalk provides the main reservoir intervals in chalk fields. Resedimentation processes include sliding, slumping, debris flows, turbidity currents, and creep (from Surlyk et al., 2003). Reprinted with permission from the Geological Society.]]
      
Redeposited, allochthonous chalk typically shows much better porosities and permeabilities compared to autochthonous chalk in the same interval. The rock properties are thought to have been enhanced by several processes (Kennedy, 1987; Taylor and Lapre, 1987):
 
Redeposited, allochthonous chalk typically shows much better porosities and permeabilities compared to autochthonous chalk in the same interval. The rock properties are thought to have been enhanced by several processes (Kennedy, 1987; Taylor and Lapre, 1987):

Navigation menu