Changes

Jump to navigation Jump to search
Line 267: Line 267:  
Barrier islands (Figure 3f) illustrate the spatial variability in facies that affect reservoir properties. Sands in the beach or foreshore are very well sorted, lack interstratified clay, and exhibit excellent reservoir properties where not cemented. Tidal inlet and flood tidal delta deposits comprise another important grouping of reservoir quality rocks, particularly because they are most often preserved in the rock record.
 
Barrier islands (Figure 3f) illustrate the spatial variability in facies that affect reservoir properties. Sands in the beach or foreshore are very well sorted, lack interstratified clay, and exhibit excellent reservoir properties where not cemented. Tidal inlet and flood tidal delta deposits comprise another important grouping of reservoir quality rocks, particularly because they are most often preserved in the rock record.
   −
Wireline log shapes through barrier island sequences vary depending on exactly where a well intersects the barrier island complex. Gamma ray, SP, and resistivity logs through the barrier core have an upward-coarsening motif (Figure 3f). Logs through the back barrier and lower shoreface are typically highly serrate and often lack a well-defined upward-coarsening motif. Logs through the barrier inlet may exhibit upward fining.
+
Wireline log shapes through barrier island sequences vary depending on exactly where a well intersects the barrier island complex. [[Basic open hole tools#Gamma ray|Gamma ray]], [[Basic open hole tools#Spontaneous potential|SP]], and [[Basic open hole tools#Resistivity|resistivity]] logs through the barrier core have an upward-coarsening motif (Figure 3f). Logs through the back barrier and lower shoreface are typically highly serrate and often lack a well-defined upward-coarsening motif. Logs through the barrier inlet may exhibit upward fining.
    
In general, barrier islands have the best reservoir quality rocks at the top of the sequence. [[Reservoir quality]] drops off as one moves either seaward down the foreshore and shoreface into muds of the marine shelf or landward into the lagoon. High reservoir quality is also developed within the tidal inlet sandstones. Two major trends in directional permeability are suggested by (1) the shore-parallel nature of foreshore and shoreface sandstones and (2) shore-perpendicular tidal inlet and delta sandstones. In coastlines dominated by tidal processes, extensive interbedded mud and sand “flats” occur in the intertidal area of the coast and sand bars in estuarine channels in the subtidal area. The reservoir quality of tidal flat environments varies as a function of sand to mud ratio of the deposits. Reservoir quality of estuarine channel deposits also varies as a function of sand to mud ratio and degree of bioturbation.
 
In general, barrier islands have the best reservoir quality rocks at the top of the sequence. [[Reservoir quality]] drops off as one moves either seaward down the foreshore and shoreface into muds of the marine shelf or landward into the lagoon. High reservoir quality is also developed within the tidal inlet sandstones. Two major trends in directional permeability are suggested by (1) the shore-parallel nature of foreshore and shoreface sandstones and (2) shore-perpendicular tidal inlet and delta sandstones. In coastlines dominated by tidal processes, extensive interbedded mud and sand “flats” occur in the intertidal area of the coast and sand bars in estuarine channels in the subtidal area. The reservoir quality of tidal flat environments varies as a function of sand to mud ratio of the deposits. Reservoir quality of estuarine channel deposits also varies as a function of sand to mud ratio and degree of bioturbation.
4,231

edits

Navigation menu