Changes

Jump to navigation Jump to search
Line 46: Line 46:     
* Identify the major lithofacies, vertical sequences, and depositional environments from available core. Relate lithofacies, at the whole-core scale, to their mineralogical, textural, and pore level properties and to permeability, [[porosity]], fluid saturations, and capillarity as measured on core plugs. Establish consistent relationships between rock properties and petrophysical properties.
 
* Identify the major lithofacies, vertical sequences, and depositional environments from available core. Relate lithofacies, at the whole-core scale, to their mineralogical, textural, and pore level properties and to permeability, [[porosity]], fluid saturations, and capillarity as measured on core plugs. Establish consistent relationships between rock properties and petrophysical properties.
* Determine what lithofacies, or associations of lithofacies, are probable flow units based on petrophysical properties, changes in texture, cementation, fracture density, differences in sedimentary structures or bedding styles, and/or separations by prominent shales or other features that may bear on fluid distribution and flow.
+
* Determine what lithofacies, or associations of lithofacies, are probable flow units based on petrophysical properties, changes in texture, cementation, [[fracture]] density, differences in sedimentary structures or bedding styles, and/or separations by prominent shales or other features that may bear on fluid distribution and flow.
 
* Calibrate wireline log response to major rock types in as much detail as possible and with appropriate depth shifting of core to logs, in order to detect changes quantitatively in flow unit quality and to correlate major flow units to uncored wells. If cores are not available, cuttings, sidewall cores, patterns of textural change inferred from log signatures, cementation or shales detected on logs, downhole images of the borehole wall, microscanner logs, or other such information must be used in place of core (see [[Wireline methods]]).
 
* Calibrate wireline log response to major rock types in as much detail as possible and with appropriate depth shifting of core to logs, in order to detect changes quantitatively in flow unit quality and to correlate major flow units to uncored wells. If cores are not available, cuttings, sidewall cores, patterns of textural change inferred from log signatures, cementation or shales detected on logs, downhole images of the borehole wall, microscanner logs, or other such information must be used in place of core (see [[Wireline methods]]).
 
* Establish the three-dimensional distribution of flow units by correlation of calibrated wireline logs. Knowledge of environments of deposition of the reservoir sequence is important to interpreting the style of correlation to be used and the expected patterns of external and internal geometry of any flow unit (see [[Lithofacies and environmental analysis of clastic depositional systems]]). During correlation, the flow unit zonation established in individual cored wells may change somewhat. Tying correlation horizons around a loop is critical because individual correlation sections alone can be deceptive.
 
* Establish the three-dimensional distribution of flow units by correlation of calibrated wireline logs. Knowledge of environments of deposition of the reservoir sequence is important to interpreting the style of correlation to be used and the expected patterns of external and internal geometry of any flow unit (see [[Lithofacies and environmental analysis of clastic depositional systems]]). During correlation, the flow unit zonation established in individual cored wells may change somewhat. Tying correlation horizons around a loop is critical because individual correlation sections alone can be deceptive.
4,231

edits

Navigation menu