Changes

Jump to navigation Jump to search
no edit summary
Line 41: Line 41:     
==Solution gas==
 
==Solution gas==
Crude oil under high pressure can contain large amounts of dissolved gas. The more gas there is in solution, the more compressible the oil. In oil reservoirs with little or no water drive, reservoir energy to drive the oil toward the wellbore can be supplied by expansion of the oil due to gas expanding in solution. This is a solution gas (or dissolved gas or depletion) drive. When pressure drops below the bubble point in the reservoir, small, disconnected gas bubbles form in pores, also pushing the oil toward the wellbore. At about 5–10% free gas in the reservoir, the bubbles coalesce and the gas moves toward the wellbore as a separate flowing phase. When this happens, oil production drops and gas production increases rapidly because of the increased relative [[permeability]] to gas.
+
[[Crude oil]] under high pressure can contain large amounts of dissolved gas. The more gas there is in solution, the more compressible the oil. In oil reservoirs with little or no water drive, reservoir energy to drive the oil toward the wellbore can be supplied by expansion of the oil due to gas expanding in solution. This is a solution gas (or dissolved gas or depletion) drive. When pressure drops below the bubble point in the reservoir, small, disconnected gas bubbles form in pores, also pushing the oil toward the wellbore. At about 5–10% free gas in the reservoir, the bubbles coalesce and the gas moves toward the wellbore as a separate flowing phase. When this happens, oil production drops and gas production increases rapidly because of the increased relative [[permeability]] to gas.
    
==Rock drive==
 
==Rock drive==

Navigation menu