− | Identifying a depositional systems tract can be achieved by analyzing seismic geometries ([[:file:sedimentary-basin-analysis_fig4-19.png|Figures 1]] and [[:file:sedimentary-basin-analysis_fig4-21.png|2]]), [[Basic open hole tools|wireline log]] motifs ([[:file:sedimentary-basin-analysis_fig4-22.png|Figure 3]]), and [[Biostratigraphy in sequence stratigraphy|biostratigraphic data]] ([[:file:sedimentary-basin-analysis_fig4-20.png|Figures 4]] and [[:file:sedimentary-basin-analysis_fig4-23.png|5]]). Carefully integrating multiple data sets increases the probability of a correct interpretation.<ref name=ch04r7>Armentrout, J. M., 1991, Paleontological constraints on depositional [[modeling]]: examples of integration of biostratigraphy and seismic stratigraphy, Pliocene–Pleistocene, Gulf of Mexico, ''in'' Weimer, P., Link, M. H., eds., Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems: New York, Springer-Verlag, p. 137–170.</ref><ref name=ch04r15>Armentrout, J. M., Malacek, S. J., Mathur, V. R., Neuder, G. L., Ragan, G. M., 1996, Intraslope basin reservoirs deposited by gravity-driven processes: south Ship Shoal and Ewing Banks areas, offshore Louisiana, in Pacht, J. A., Sheriff, R. E., Perkins, B. F., eds., Stratigraphic Analysis: Utilizing Advanced Geophysical, Wireline, and Borehole Technology for Petroleum Exploration and Production: Proceedings, Gulf Coast Section SEPM 17th Annual Research conference, p. 7–18.</ref><ref name=ch04r8>Armentrout, J. M., 1993, Relative seal-level variations and fault-salt response: offshore Texas examples: Proceedings, Gulf Coast Section SEPM 14th Annual Research Conference, p. 1–7.</ref><ref name=ch04r101>Vail, P. R., Wornardt, W. W., 1990, Well log seismic stratigraphy: a new tool for exploration in the '90s: Proceedings, Gulf Coast Section SEPM 11th Annual Research conference, p. 379–388.</ref> | + | Identifying a depositional systems tract can be achieved by analyzing [[Reflection configuration patterns|seismic geometries]] ([[:file:sedimentary-basin-analysis_fig4-19.png|Figures 1]] and [[:file:sedimentary-basin-analysis_fig4-21.png|2]]), [[Basic open hole tools|wireline log]] motifs ([[:file:sedimentary-basin-analysis_fig4-22.png|Figure 3]]), and [[Biostratigraphy in sequence stratigraphy|biostratigraphic data]] ([[:file:sedimentary-basin-analysis_fig4-20.png|Figures 4]] and [[:file:sedimentary-basin-analysis_fig4-23.png|5]]). Carefully integrating multiple data sets increases the probability of a correct interpretation.<ref name=ch04r7>Armentrout, J. M., 1991, Paleontological constraints on depositional [[modeling]]: examples of integration of biostratigraphy and seismic stratigraphy, Pliocene–Pleistocene, Gulf of Mexico, ''in'' Weimer, P., Link, M. H., eds., Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems: New York, Springer-Verlag, p. 137–170.</ref><ref name=ch04r15>Armentrout, J. M., Malacek, S. J., Mathur, V. R., Neuder, G. L., Ragan, G. M., 1996, Intraslope basin reservoirs deposited by gravity-driven processes: south Ship Shoal and Ewing Banks areas, offshore Louisiana, in Pacht, J. A., Sheriff, R. E., Perkins, B. F., eds., Stratigraphic Analysis: Utilizing Advanced Geophysical, Wireline, and Borehole Technology for Petroleum Exploration and Production: Proceedings, Gulf Coast Section SEPM 17th Annual Research conference, p. 7–18.</ref><ref name=ch04r8>Armentrout, J. M., 1993, Relative seal-level variations and fault-salt response: offshore Texas examples: Proceedings, Gulf Coast Section SEPM 14th Annual Research Conference, p. 1–7.</ref><ref name=ch04r101>Vail, P. R., Wornardt, W. W., 1990, Well log seismic stratigraphy: a new tool for exploration in the '90s: Proceedings, Gulf Coast Section SEPM 11th Annual Research conference, p. 379–388.</ref> |