| This petroleum system formed in sedimentary rocks deposited in a failed rift system in the North Sea between Great Britain, Norway, and Denmark. The prerift rocks are mostly underburden rocks and are not involved in this petroleum system except as reservoir rocks for a minor amount of petroleum. The synrift sedimentary section contains the source rock. The reservoir rock, seal rock, and overburden rock were deposited during the postrift period of sedimentation. | | This petroleum system formed in sedimentary rocks deposited in a failed rift system in the North Sea between Great Britain, Norway, and Denmark. The prerift rocks are mostly underburden rocks and are not involved in this petroleum system except as reservoir rocks for a minor amount of petroleum. The synrift sedimentary section contains the source rock. The reservoir rock, seal rock, and overburden rock were deposited during the postrift period of sedimentation. |
− | The oil-source rock correlation is a multiparameter geochemical approach; biological markers are one parameter. Biological marker analysis by Mackenzie et al.<ref name=ch03r6>Mackenzie, A., S., Maxwell, J., R., Coleman, M., L., 1983, Biological marker and isotope studies of North Sea crude oils and sediments: Proceedings of the 11th World Petroleum Congress, London, Section PD1(4), p. 45–56.</ref> and Hughes et al.<ref name=ch03r5>Hughes, W., B., Holba, A., G., Miller, D., E., Richardson, J., S., 1985, Geochemistry of the greater Ekofisk crude oils, in Thomas, B., M., eds., Petroleum Geochemistry in the Exploration of the Norwegian Shelf: London, Graham and Trotman, p. 75–92.</ref> from reservoirs in the Greater Ekofisk, Forties, Montrose, and Argyll fields shows that these oils originated from the Mandal Formation source rock, as illustrated in the figure below. | + | The oil-source rock correlation is a multiparameter geochemical approach; biological markers are one parameter. Biological marker analysis by Mackenzie et al.<ref name=ch03r6>Mackenzie, A., S., Maxwell, J., R., Coleman, M., L., 1983, Biological marker and isotope studies of North Sea crude oils and sediments: Proceedings of the 11th World Petroleum Congress, London, Section PD1(4), p. 45–56.</ref> and Hughes et al.<ref name=ch03r5>Hughes, W., B., Holba, A., G., Miller, D., E., Richardson, J., S., 1985, Geochemistry of the greater Ekofisk crude oils, in Thomas, B., M., eds., Petroleum Geochemistry in the Exploration of the Norwegian Shelf: London, Graham and Trotman, p. 75–92.</ref> from reservoirs in the Greater Ekofisk, Forties, Montrose, and Argyll fields shows that these oils originated from the Mandal Formation source rock, as illustrated in [[:file:petroleum-systems_fig3-10.png|Figure 4]]. |
− | An events chart indicates when the essential elements and processes took place to form a petroleum system, the critical moment, and the preservation time. In the chart below, the source rock is the Upper Jurassic to Lower Cretaceous Mandal Formation, which was deposited as the rift formed. Most overburden rock of Cretaceous to Cenozoic age was deposited after the rift formed. The seal rock ranges from Permian to Neogene and consists of halite, shale, and chalk. Based on volume of petroleum, the Permian to Jurassic reservoir rocks are least important; the most important reservoir rocks are Late Cretaceous to early Paleogene in age. Most traps were created as the rift formed and filled through structural movement and halokenesis. Petroleum generation-migration-accumulation occurred from just over 100 Ma to the present day. The critical moment, or peak generation, is at 30 Ma. | + | An events chart indicates when the essential elements and processes took place to form a petroleum system, the critical moment, and the preservation time. In [[:file:petroleum-systems_fig3-11.png|Figure 5]], the source rock is the Upper Jurassic to Lower Cretaceous Mandal Formation, which was deposited as the rift formed. Most overburden rock of Cretaceous to Cenozoic age was deposited after the rift formed. The seal rock ranges from Permian to Neogene and consists of halite, shale, and chalk. Based on volume of petroleum, the Permian to Jurassic reservoir rocks are least important; the most important reservoir rocks are Late Cretaceous to early Paleogene in age. Most traps were created as the rift formed and filled through structural movement and halokenesis. Petroleum generation-migration-accumulation occurred from just over 100 Ma to the present day. The critical moment, or peak generation, is at 30 Ma. |