− | Among these, the optical method is omitted from the following discussion because it is confined to boreholes with clear borehole fluids and is rarely used in the petroleum industry. | + | Among these, the optical method is omitted from the following discussion because it is confined to boreholes with clear borehole fluids and is rarely used in the [[petroleum]] industry. |
| Table 1 summarizes the main characteristics of the two tools discussed in this article, and in the related articles in the ''See Also'' section. The currently available borehole image methods provide only semiquantitative physical measurements and therefore are not suitable for the estimation of bulk rock properties as is done with wireline logs. Because of the two-dimensional nature of borehole images, the principal information is structural, that is, it is pertinent to the geometrical arrangement of rock layers caused by sedimentary and tectonic forces. This makes borehole images powerful tools in the hands of petroleum geologists and reservoir engineers in determining lithofacies types, folds, faults, and [[fracture]]s influencing reservoir compartmentalization, extent, and performance. | | Table 1 summarizes the main characteristics of the two tools discussed in this article, and in the related articles in the ''See Also'' section. The currently available borehole image methods provide only semiquantitative physical measurements and therefore are not suitable for the estimation of bulk rock properties as is done with wireline logs. Because of the two-dimensional nature of borehole images, the principal information is structural, that is, it is pertinent to the geometrical arrangement of rock layers caused by sedimentary and tectonic forces. This makes borehole images powerful tools in the hands of petroleum geologists and reservoir engineers in determining lithofacies types, folds, faults, and [[fracture]]s influencing reservoir compartmentalization, extent, and performance. |