Changes

Jump to navigation Jump to search
102 bytes removed ,  19:56, 16 July 2014
Line 40: Line 40:  
[[file:geological-cross-sections_fig2.png|300px|thumb|{{figure number|2}}Schematic stratigraphic cross section along part of the north flank of the Wilmington anticline in the Long Beach unit showing log displays. Distance scale is irregular to make the cross section more compact. The left track of each log is an [[Basic open hole tools#Spontaneous potential|SP]] or [[Basic open hole tools#Gamma ray|gamma ray]] trace and the right track is a resistivity trace. (From Slatt et al.<ref name=pt06r122 />)]]
 
[[file:geological-cross-sections_fig2.png|300px|thumb|{{figure number|2}}Schematic stratigraphic cross section along part of the north flank of the Wilmington anticline in the Long Beach unit showing log displays. Distance scale is irregular to make the cross section more compact. The left track of each log is an [[Basic open hole tools#Spontaneous potential|SP]] or [[Basic open hole tools#Gamma ray|gamma ray]] trace and the right track is a resistivity trace. (From Slatt et al.<ref name=pt06r122 />)]]
   −
The orientation of a cross section must be chosen to balance the need for a clear representation of the features of interest with the availability of appropriate information. In development geology, this information comes largely from well data (geophysical logs, mudlogs, and cores), but in some places, outcrops and seismic reflection data can be used to constrain interpretations (see [[Wellsite methods]], [[Wireline methods]], [[Laboratory methods]], and [[Geophysical methods]]).
+
The orientation of a cross section must be chosen to balance the need for a clear representation of the features of interest with the availability of appropriate information. In development geology, this information comes largely from well data (geophysical logs, mudlogs, and cores), but in some places, outcrops and seismic reflection data can be used to constrain interpretations.
    
Stratigraphic sections should be oriented perpendicular to depositional strike (dip or transverse section) to show facies changes toward or away from the basin margin. Strike sections parallel to the basin margin should be drawn to show lateral variations of particular beds or sequences. In the tectonic context of a basin, these axes are also structural axes. Determining the orientation of a stratigraphic section is also complicated by the fact that stratigraphic trends may be at any angle to subsequent structural trends.
 
Stratigraphic sections should be oriented perpendicular to depositional strike (dip or transverse section) to show facies changes toward or away from the basin margin. Strike sections parallel to the basin margin should be drawn to show lateral variations of particular beds or sequences. In the tectonic context of a basin, these axes are also structural axes. Determining the orientation of a stratigraphic section is also complicated by the fact that stratigraphic trends may be at any angle to subsequent structural trends.
4,231

edits

Navigation menu