Changes

Jump to navigation Jump to search
no edit summary
Line 29: Line 29:  
The basic principles of 2-D seismic data processing still apply to 3-D processing. In 2-D processing, traces are collected as common midpoint (CMP) gathers, while in 3-D processing, traces are collected as common-cell gathers (bins). These gathers are used in velocity analysis, and common-cell stacks are generated. Typical cell sizes are 25 by [[length::25 m]] for land surveys and 12.5 by [[depth::37.5 m]] for marine surveys.
 
The basic principles of 2-D seismic data processing still apply to 3-D processing. In 2-D processing, traces are collected as common midpoint (CMP) gathers, while in 3-D processing, traces are collected as common-cell gathers (bins). These gathers are used in velocity analysis, and common-cell stacks are generated. Typical cell sizes are 25 by [[length::25 m]] for land surveys and 12.5 by [[depth::37.5 m]] for marine surveys.
   −
Conventional 3-D recording geometries often complicate the process of stacking the data in a common-cell gather. Cable feathering in marine 3-D surveys can result in traveltime deviations from a single hyperbolic moveout within a common-cell gather. For land 3-D surveys, azimuth-dependent moveout within a common cell gather is an issue.
+
Conventional 3-D recording geometries often complicate the process of stacking the data in a common-cell gather. Cable feathering in marine 3-D surveys can result in traveltime deviations from a single hyperbolic moveout within a common-cell gather. For land 3-D surveys, [[azimuth]]-dependent moveout within a common cell gather is an issue.
    
After stacking, the 3-D data volume is sometimes (but not always) migrated in two stages. First, a 2-D migration is applied along the in-line or cross-line direction. Then the data are sorted, and a second pass of 2-D migration is applied along the orthogonal direction. Before the second pass of migration, the data sometimes need to be trace interpolated along the cross-line direction to avoid spatial aliasing.
 
After stacking, the 3-D data volume is sometimes (but not always) migrated in two stages. First, a 2-D migration is applied along the in-line or cross-line direction. Then the data are sorted, and a second pass of 2-D migration is applied along the orthogonal direction. Before the second pass of migration, the data sometimes need to be trace interpolated along the cross-line direction to avoid spatial aliasing.

Navigation menu