Changes

Jump to navigation Jump to search
Line 53: Line 53:  
Surface-consistent amplitude corrections are also necessary when amplitude variations in the data may relate to source and receiver environment and not to the geology. These corrections are distributed among the surface terms of source, receiver, and offset, plus a single subsurface (CDP or geological) term.
 
Surface-consistent amplitude corrections are also necessary when amplitude variations in the data may relate to source and receiver environment and not to the geology. These corrections are distributed among the surface terms of source, receiver, and offset, plus a single subsurface (CDP or geological) term.
   −
Normal moveout (NMO) and residual statics corrections must be performed as accurately as possible, for any AVO analysis is degraded by inappropriate corrections. The recent use of interactive processing workstations is providing explorationists with the necessary control over the selection of correct stacking velocities (see Fart 8).
+
Normal moveout (NMO) and residual statics corrections must be performed as accurately as possible, for any AVO analysis is degraded by inappropriate corrections. The recent use of interactive processing workstations is providing explorationists with the necessary control over the selection of correct stacking velocities (see "[[Integrated computer methods]]").
    
Signal to noise ratio improvements must occur on individual traces in the CDP gathers. Robust deconvolution is important to preserve stability of the wavelet across all offsets. In the land data case, a surface-consistent deconvolution method is usually desirable. To further stabilize the wavelet, deconvolve the data to a desired target waveform with frequency cutoffs predetermined by knowledge of the input data's usable frequency range. Trace-dependent deconvolution, such as a spiking operator, can sometimes produce severe distortions in reflector waveform when the signal to noise ratio is low on some of the individual traces.
 
Signal to noise ratio improvements must occur on individual traces in the CDP gathers. Robust deconvolution is important to preserve stability of the wavelet across all offsets. In the land data case, a surface-consistent deconvolution method is usually desirable. To further stabilize the wavelet, deconvolve the data to a desired target waveform with frequency cutoffs predetermined by knowledge of the input data's usable frequency range. Trace-dependent deconvolution, such as a spiking operator, can sometimes produce severe distortions in reflector waveform when the signal to noise ratio is low on some of the individual traces.

Navigation menu