Changes

Jump to navigation Jump to search
m
Line 6: Line 6:  
  | part    = Critical elements of the petroleum system
 
  | part    = Critical elements of the petroleum system
 
  | chapter = Formation fluid pressure and its application
 
  | chapter = Formation fluid pressure and its application
  | frompg  = 5-1
+
  | frompg  = 5-60
  | topg    = 5-64
+
  | topg    = 5-60
 
  | author  = Edward A. Beaumont, Forrest Fiedler
 
  | author  = Edward A. Beaumont, Forrest Fiedler
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch05/ch05.htm
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch05/ch05.htm
Line 18: Line 18:  
===Potential of water vs. hydrocarbons===
 
===Potential of water vs. hydrocarbons===
   −
Fluid pressure equals pgH. Under hydrostatic conditions, the buoyant force equals
+
Fluid pressure equals ρgH. Under hydrostatic conditions, the buoyant force equals
    
:<math>\rho_{\rm w} \mbox{gH}_{\rm w} - \rho_{\rm h}\mbox{gH}_{\rm h}</math>
 
:<math>\rho_{\rm w} \mbox{gH}_{\rm w} - \rho_{\rm h}\mbox{gH}_{\rm h}</math>
Line 25: Line 25:     
* ρ<sub>w</sub> = water density
 
* ρ<sub>w</sub> = water density
* ρ<sub>h</sub> = hydrocarbon density
+
* ρ<sub>h</sub> = [[hydrocarbon]] density
 
* H<sub>w</sub> = water depth
 
* H<sub>w</sub> = water depth
* H<sub>h</sub> = hydrocarbon column height
+
* H<sub>h</sub> = [[hydrocarbon column]] height
    
Under hydrodynamic conditions, the potential for a hydrocarbon column (Φ<sub>h</sub>) is related to the potential of the water by the equation
 
Under hydrodynamic conditions, the potential for a hydrocarbon column (Φ<sub>h</sub>) is related to the potential of the water by the equation
Line 33: Line 33:  
:<math>\Phi_{\rm h} = \rho_{\rm h}\mbox{gH}_{\rm h} = \rho_{\rm w}\mbox{gH}_{\rm w} - (\rho_{\rm w} - \rho_{\rm h})\mbox{gZ}</math>
 
:<math>\Phi_{\rm h} = \rho_{\rm h}\mbox{gH}_{\rm h} = \rho_{\rm w}\mbox{gH}_{\rm w} - (\rho_{\rm w} - \rho_{\rm h})\mbox{gZ}</math>
   −
Dividing through by g (ρ<sub>w</sub> – ρ<sub>h</sub>)/ρ<sub>h</sub> to simplify gives (in a uniformly flat gravity field)
+
Dividing through by g (ρ<sub>w</sub> – ρ<sub>h</sub>)/ρ<sub>h</sub> to simplify gives (in a uniformly flat [[gravity]] field)
    
:<math>\left(\frac{\rho_{\rm h}}{\rho_{\rm w} - \rho_{\rm h}}\right) \mbox{H}_{\rm h} = \left(\frac{\rho_{\rm w}}{\rho_{\rm w} - \rho_{\rm h}}\right)\mbox{H}_{\rm w} - \mbox{Z}</math>
 
:<math>\left(\frac{\rho_{\rm h}}{\rho_{\rm w} - \rho_{\rm h}}\right) \mbox{H}_{\rm h} = \left(\frac{\rho_{\rm w}}{\rho_{\rm w} - \rho_{\rm h}}\right)\mbox{H}_{\rm w} - \mbox{Z}</math>
   −
Constant values for the left-hand side of the equation are equipotential surfaces for hydrocarbons. Hubbert<ref name=ch05r11>Hubbert, K., 1953, [http://archives.datapages.com/data/bulletns/1953-56/data/pg/0037/0008/1950/1954.htm Entrapment of petroleum under hydrodynamic conditions]: AAPG Bulletin, vol. 37, no. 8, p. 1954–2026. The original paper that proposed hydrodynamics as an important trapping mechanism.</ref> called this factor U. From the right side, constant values for ρ<sub>w</sub>/(ρ<sub>w</sub> – ρ<sub>h</sub>)H<sub>w</sub> are equipotential surfaces for water. Hubbert called this factor V. The elevation factor (Z) is the difference between the equipotential surfaces for hydrocarbons and water.
+
Constant values for the left-hand side of the equation are [[Wikipedia:Equipotential|equipotential]] surfaces for hydrocarbons. Hubbert<ref name=ch05r11>Hubbert, K., 1953, [http://archives.datapages.com/data/bulletns/1953-56/data/pg/0037/0008/1950/1954.htm Entrapment of petroleum under hydrodynamic conditions]: AAPG Bulletin, vol. 37, no. 8, p. 1954–2026. The original paper that proposed hydrodynamics as an important trapping mechanism.</ref> called this factor U. From the right side, constant values for ρ<sub>w</sub>/(ρ<sub>w</sub> – ρ<sub>h</sub>)H<sub>w</sub> are equipotential surfaces for water. Hubbert called this factor V. The elevation factor (Z) is the difference between the equipotential surfaces for hydrocarbons and water.
    
Substituting U and V in the above equation gives
 
Substituting U and V in the above equation gives
Line 47: Line 47:  
===Hydrodynamic effect on traps===
 
===Hydrodynamic effect on traps===
   −
[[file:formation-fluid-pressure-and-its-application_fig5-37.png|300px|thumb|{{figure number|1}}Vectors and equipotential lines for a hydrocarbon accumulation in an anticline in a hydrodynamic environment. Modified. Copyright: North, 1985; courtesy Allen and Unwin.]]
+
[[file:formation-fluid-pressure-and-its-application_fig5-37.png|300px|thumb|{{figure number|1}}Vectors and equipotential lines for a hydrocarbon accumulation in an anticline in a hydrodynamic environment. Modified. Copyright: North;<ref name=North1985>North, F. K., 1985, Petroleum Geology: London, Allen & Unwin, 246 p.</ref> courtesy Allen and Unwin.]]
   −
In a hydrostatic environment, the free-water level of a trap is horizontal. In a hydrodynamic environment, the free-water level of a trap is tilted because the buoyant force (P<sub>b</sub>) is interfered with by the hydrodynamic force (P<sub>w</sub>). The resultant interference is the vector known as the confining force (P<sub>cf</sub>). U, an equipotential line, is perpendicular to P<sub>cf</sub> and is tilted because of the effect of P<sub>w</sub>. The diagram in [[:file:formation-fluid-pressure-and-its-application_fig5-37.png|Figure 1]] shows these vectors and the equipotential lines for a hydrocarbon accumulation in an anticline in a hydrodynamic environment.
+
In a hydrostatic environment, the free-water level of a trap is horizontal. In a hydrodynamic environment, the free-water level of a trap is tilted because the buoyant force (P<sub>b</sub>) is interfered with by the hydrodynamic force (P<sub>w</sub>). The resultant interference is the vector known as the confining force (P<sub>cf</sub>). U, an equipotential line, is perpendicular to P<sub>cf</sub> and is tilted because of the effect of P<sub>w</sub>. The diagram in [[:file:formation-fluid-pressure-and-its-application_fig5-37.png|Figure 1]] shows these vectors and the equipotential lines for a hydrocarbon [[accumulation]] in an [[anticline]] in a hydrodynamic environment.
    
==See also==
 
==See also==
Line 65: Line 65:  
[[Category:Critical elements of the petroleum system]]  
 
[[Category:Critical elements of the petroleum system]]  
 
[[Category:Formation fluid pressure and its application]]
 
[[Category:Formation fluid pressure and its application]]
 +
[[Category:Treatise Handbook 3]]

Navigation menu