Changes

Jump to navigation Jump to search
Line 47: Line 47:  
[[file:predicting-reservoir-system-quality-and-performance_fig9-42.png|300px|thumb|{{figure number|3}}Empirical ternary diagram for estimating height above free water, pore type (r<sub>35</sub>), and S<sub>w</sub> for a flow unit when the other two variables are known.]]
 
[[file:predicting-reservoir-system-quality-and-performance_fig9-42.png|300px|thumb|{{figure number|3}}Empirical ternary diagram for estimating height above free water, pore type (r<sub>35</sub>), and S<sub>w</sub> for a flow unit when the other two variables are known.]]
   −
The empirical ternary diagram in [[:file:predicting-reservoir-system-quality-and-performance_fig9-42.png|Figure 3]] is handy for estimating either height above free water, pore type (r<sub>35</sub>), or S<sub>w</sub> for a flow unit when the other two variables are known. For example, if S<sub>w</sub> for a flow unit is 20% and the pore type is macro with a port size of approximately 3μ, then the height above free water for the flow unit is approximately [[length::100 ft]]. Assumptions for the diagram include 30°API gravity oil, saltwater formation water, and water wet.
+
The empirical ternary diagram in [[:file:predicting-reservoir-system-quality-and-performance_fig9-42.png|Figure 3]] is handy for estimating either height above free water, pore type ([[Characterizing_rock_quality#What_is_r35.3F|r<sub>35</sub>]]), or S<sub>w</sub> for a flow unit when the other two variables are known. For example, if S<sub>w</sub> for a flow unit is 20% and the pore type is macro with a port size of approximately 3μ, then the height above free water for the flow unit is approximately [[length::100 ft]]. Assumptions for the diagram include 30°API gravity oil, saltwater formation water, and water wet.
    
==See also==
 
==See also==
4,231

edits

Navigation menu