Changes

Jump to navigation Jump to search
no edit summary
Line 17: Line 17:  
[[file:M91Ch11FG70.JPG|thumb|300px|{{figure number|1}}A point bar cut into the underlying Ivan limestone as picked out by varying seismic amplitudes on a horizon display, late Pennsylvanian to Early Permian, Baylor County, Texas (from Burnett<ref name=Burnett_1996>Burnett, M., 1996, [http://archives.datapages.com/data/specpubs/study42/ch05/0062.htm 3-D seismic expression of a shallow fluvial system in west central Texas], in P. Weimer and T. L. Davis, eds.: AAPG Studies in Geology 42 and SEG (Society of Exploration Geophysicists) Geophysical Developments Series 5, p. 45–56.</ref>). Reprinted with permission from the AAPG.]]
 
[[file:M91Ch11FG70.JPG|thumb|300px|{{figure number|1}}A point bar cut into the underlying Ivan limestone as picked out by varying seismic amplitudes on a horizon display, late Pennsylvanian to Early Permian, Baylor County, Texas (from Burnett<ref name=Burnett_1996>Burnett, M., 1996, [http://archives.datapages.com/data/specpubs/study42/ch05/0062.htm 3-D seismic expression of a shallow fluvial system in west central Texas], in P. Weimer and T. L. Davis, eds.: AAPG Studies in Geology 42 and SEG (Society of Exploration Geophysicists) Geophysical Developments Series 5, p. 45–56.</ref>). Reprinted with permission from the AAPG.]]
   −
Despite the above difficulties, the production geologist will nevertheless try and find some basis for providing a predictive model for the subsurface geology of a fluvial reservoir. Seismic data can help to determine the planform geometry where it is of sufficient resolution ([[:file:M91Ch11FG70.JPG|Figure 1]]). Fluvial geometries can sometimes be well differentiated on horizon slice amplitude displays (e.g., Brown et al.,<ref name=Brownetal_1981>Brown, A. R., C. G. Dahm, and R. J. Graebner, 1981, A stratigraphic case history using three-dimensional seismic data in the Gulf of Thailand: Geophysical Prospecting, v. 29, no. 3, p. 327–349.</ref> Rijks and Jauffred,<ref name=Rijksandjauffred_1991>Rijks, E. J. K., and J. C. E. M. Jauffred, 1991, Attribute extraction: An important application in any detailed 3D interpretation study: Leading Edge, v. 10, no. 9, p. 11–19.</ref> Noah et al.,<ref name=Noahetal_1992>Noah, J. T., G. S. Hofland, and K. Lemke, 1992, Seismic interpretation of meander channel point-bar deposits using realistic seismic modeling techniques: The Leading Edge, v. 11, p. 13–18.</ref> Carter<ref name=Carter_2003>Carter, D. C., 2003, 3-D seismic geomorphology: [http://archives.datapages.com/data/bulletns/2003/06jun/0909/0909.HTM Insights into fluvial reservoir deposition and performance, Widuri field, Java Sea]: AAPG Bulletin, v. 87, no. 6, p. 909–934.</ref>).
+
Despite the above difficulties, the production geologist will nevertheless try and find some basis for providing a predictive model for the subsurface geology of a fluvial reservoir. Seismic data can help to determine the planform geometry where it is of sufficient resolution ([[:file:M91Ch11FG70.JPG|Figure 1]]). Fluvial geometries can sometimes be well differentiated on horizon slice amplitude displays (e.g., Brown et al.,<ref name=Brownetal_1981>Brown, A. R., C. G. Dahm, and R. J. Graebner, 1981, A stratigraphic case history using three-dimensional seismic data in the Gulf of Thailand: Geophysical Prospecting, v. 29, no. 3, p. 327–349.</ref> Rijks and Jauffred,<ref name=Rijksandjauffred_1991>Rijks, E. J. K., and J. C. E. M. Jauffred, 1991, Attribute extraction: An important application in any detailed 3D interpretation study: Leading Edge, v. 10, no. 9, p. 11–19.</ref> Noah et al.,<ref name=Noahetal_1992>Noah, J. T., G. S. Hofland, and K. Lemke, 1992, Seismic interpretation of meander channel point-bar deposits using realistic seismic modeling techniques: The Leading Edge, v. 11, p. 13–18.</ref> Carter<ref name=Carter_2003>Carter, D. C., 2003, [http://archives.datapages.com/data/bulletns/2003/06jun/0909/0909.HTM 3-D seismic geomorphology:  Insights into fluvial reservoir deposition and performance, Widuri field, Java Sea]: AAPG Bulletin, v. 87, no. 6, p. 909–934.</ref>).
    
Meander belt reservoirs show different production behavior characteristics from braided river reservoirs; in the absence of seismic [[geomorphology]] evidence, the production geologist should intuitively pick the fluvial geometry type most likely to fit the available data and the reservoir performance. Perhaps because of the uncertainty involved in determining the planform geometry in fluvial reservoirs, the scenario approach (see [[Reservoir uncertainty]]) may be an appropriate tool to help evaluate fluvial reservoirs.
 
Meander belt reservoirs show different production behavior characteristics from braided river reservoirs; in the absence of seismic [[geomorphology]] evidence, the production geologist should intuitively pick the fluvial geometry type most likely to fit the available data and the reservoir performance. Perhaps because of the uncertainty involved in determining the planform geometry in fluvial reservoirs, the scenario approach (see [[Reservoir uncertainty]]) may be an appropriate tool to help evaluate fluvial reservoirs.

Navigation menu