| Carbonate reservoirs can be difficult to develop for a variety of reasons. They generally have poorer recoveries than siliciclastic sediments (e.g., Sun and Sloan, 2003). A combination of depositional geometry and diagenesis creates highly heterogeneous reservoirs (Table 31). They can have lower primary recoveries as connected volumes may be areally limited with no contact to a large aquifer. The lower energy drive mechanisms such as solution gas drive are common. Heterogeneity at all the reservoir scales can make them a challenge to model, and it is not an easy task to make reliable predictions about their production performance. Reservoir management is difficult because the accurate targeting of production and injection wells is problematic, and sweep may be inefficient as a result of this. | | Carbonate reservoirs can be difficult to develop for a variety of reasons. They generally have poorer recoveries than siliciclastic sediments (e.g., Sun and Sloan, 2003). A combination of depositional geometry and diagenesis creates highly heterogeneous reservoirs (Table 31). They can have lower primary recoveries as connected volumes may be areally limited with no contact to a large aquifer. The lower energy drive mechanisms such as solution gas drive are common. Heterogeneity at all the reservoir scales can make them a challenge to model, and it is not an easy task to make reliable predictions about their production performance. Reservoir management is difficult because the accurate targeting of production and injection wells is problematic, and sweep may be inefficient as a result of this. |
| Pore sizes in carbonates vary from micron scale to cave systems. Carbonates with vuggy porosity can store significant volumes of oil, yet sometimes the vugs are largely unconnected, yielding low flow rates. Tiny pores on a micron scale can form a high component of the porosity. The porosity may look impressive on logs, yet much of this may be microporosity and unproducible (Pittman, 1971; Cantrell and Hagerty, 1999). The petrophysical analysis of carbonate reservoirs is difficult and prone to greater uncertainty than with sandstone reservoirs. The uncertainty in the determination of water saturation, effective porosity, net pay, and permeability will impact the estimation of in-place volumes and reserves. Carbonates have a tendency to oil-wet characteristics or show mixed wettability. Typical behavior in oil-wet systems includes early water breakthrough and high water production rates (see Chapter 4, this publication). Carbonates can have thick transition zones in reservoirs with low matrix permeability (Masalmeh et al., 2005). Residual oil saturations can also be high (Holtz et al., 1992; Kamath et al., 2001). | | Pore sizes in carbonates vary from micron scale to cave systems. Carbonates with vuggy porosity can store significant volumes of oil, yet sometimes the vugs are largely unconnected, yielding low flow rates. Tiny pores on a micron scale can form a high component of the porosity. The porosity may look impressive on logs, yet much of this may be microporosity and unproducible (Pittman, 1971; Cantrell and Hagerty, 1999). The petrophysical analysis of carbonate reservoirs is difficult and prone to greater uncertainty than with sandstone reservoirs. The uncertainty in the determination of water saturation, effective porosity, net pay, and permeability will impact the estimation of in-place volumes and reserves. Carbonates have a tendency to oil-wet characteristics or show mixed wettability. Typical behavior in oil-wet systems includes early water breakthrough and high water production rates (see Chapter 4, this publication). Carbonates can have thick transition zones in reservoirs with low matrix permeability (Masalmeh et al., 2005). Residual oil saturations can also be high (Holtz et al., 1992; Kamath et al., 2001). |