Line 26: |
Line 26: |
| Around the world, including Saudi Arabia, natural gas is being sought as a replacement for the far more valuable and expensive oil resource. The challenge is to develop and use this resource soundly, economically, safely, and effectively in our energy mix. It provides a means to an environmentally reasonable and abundant energy resource with a long production potential, thereby providing a bridge to the future until new energy sources are available at a reasonable cost and sufficient capacity to meet our industrial, social, and political needs—be they renewable or other forms of energy resources. | | Around the world, including Saudi Arabia, natural gas is being sought as a replacement for the far more valuable and expensive oil resource. The challenge is to develop and use this resource soundly, economically, safely, and effectively in our energy mix. It provides a means to an environmentally reasonable and abundant energy resource with a long production potential, thereby providing a bridge to the future until new energy sources are available at a reasonable cost and sufficient capacity to meet our industrial, social, and political needs—be they renewable or other forms of energy resources. |
| | | |
− | United States independent petroleum companies, led originally by Mitchell Energy and Development Corp. (MEDC), pursued and developed these unconventional shale-gas reservoir systems mostly during the last 10 yr in principal, although Mitchell's effort began much earlier. In 1982, drilling of the MEDC 1-Slay well Barnett Shale for its shale-gas resource potential was the launch point for this revolutionary exploration and production (EampP) effort (Steward, 2007). It was an incredibly difficult resource to exploit and was noncommercial through the 1980s and most of the 1990s. Even the first Barnett Shale horizontal well, drilled in 1991, the MEDC 1-Sims, was not an economic or even technical success. Horizontal drilling is an important part of the equation that has led to the development of shale resource plays, but it is only one component in a series of interlinked controls on obtaining gas flow from shale. For example, without understanding the importance of rock mechanical properties, stress fields, and stimulation processes, horizontal drilling alone would not have caused the shale-gas resource to develop so dramatically. Good gas flow rates in the 1990s were typically 1.4 times 104 m3/day (500 mcf/day) or less for most Barnett Shale wells, all of which were verticals except for the 1-Sims well. The economics were enhanced when MEDC began using slick-water stimulation to reduce costs, with the surprising benefit of improved performance in terms of gas flow rates (Steward, 2007). It was also learned that vertical wells could be restimulated, which raised production back to significant levels, commonly reaching or exceeding original gas flow rates. The use of technologies such as three-dimensional seismic and microseismic proved highly beneficial in moving the success of Barnett Shale forward (Steward, 2007). For example, a key point still argued to this day is the impact of structure and faulting on production potential. Obviously, conventional wisdom would suggest these as positive risk factors, when in fact they are typically negative. It was learned that stimulation energy was thieved by the presence of structures and faults, thereby typically lowering success when present (Steward, 2007). Application of microseismic surveys allowed engineers to map where the stimulation energy was being directed, thereby allowing adjustments to the stimulation program (Steward, 2007). | + | United States independent petroleum companies, led originally by Mitchell Energy and Development Corp. (MEDC), pursued and developed these unconventional shale-gas reservoir systems mostly during the last 10 yr in principal, although Mitchell's effort began much earlier. In 1982, drilling of the MEDC 1-Slay well Barnett Shale for its shale-gas resource potential was the launch point for this revolutionary exploration and production (EampP) effort.<ref name=St2007>Steward, D. B., 2007, The Barnett Shale play: Phoenix of the Fort Worth Basin—A history: The Fort Worth Geological Society and The North Texas Geological Society, ISBN 978-0-9792841-0-6, 202 p.</ref> It was an incredibly difficult resource to exploit and was noncommercial through the 1980s and most of the 1990s. Even the first Barnett Shale horizontal well, drilled in 1991, the MEDC 1-Sims, was not an economic or even technical success. Horizontal drilling is an important part of the equation that has led to the development of shale resource plays, but it is only one component in a series of interlinked controls on obtaining gas flow from shale. For example, without understanding the importance of rock mechanical properties, stress fields, and stimulation processes, horizontal drilling alone would not have caused the shale-gas resource to develop so dramatically. Good gas flow rates in the 1990s were typically 1.4 times 104 m3/day (500 mcf/day) or less for most Barnett Shale wells, all of which were verticals except for the 1-Sims well. The economics were enhanced when MEDC began using slick-water stimulation to reduce costs, with the surprising benefit of improved performance in terms of gas flow rates.<ref name=St2007 /> It was also learned that vertical wells could be restimulated, which raised production back to significant levels, commonly reaching or exceeding original gas flow rates. The use of technologies such as three-dimensional seismic and microseismic proved highly beneficial in moving the success of Barnett Shale forward.<ref name=St2007 /> For example, a key point still argued to this day is the impact of structure and faulting on production potential. Obviously, conventional wisdom would suggest these as positive risk factors, when in fact they are typically negative. It was learned that stimulation energy was thieved by the presence of structures and faults, thereby typically lowering success when present.<ref name=St2007 /> Application of microseismic surveys allowed engineers to map where the stimulation energy was being directed, thereby allowing adjustments to the stimulation program.<ref name=St2007 /> |
| | | |
| Ultimately, industry's use of horizontal wells and new technologies enhanced success in the Barnett Shale, and industry began to recognize its gas resource potential. However, the Barnett Shale-gas resource system was typically viewed as a unique case that could not be reproduced elsewhere. | | Ultimately, industry's use of horizontal wells and new technologies enhanced success in the Barnett Shale, and industry began to recognize its gas resource potential. However, the Barnett Shale-gas resource system was typically viewed as a unique case that could not be reproduced elsewhere. |
Line 38: |
Line 38: |
| [[File:M97FG2.jpg|thumb|400px|{{figure number|2}}Comparison of Montney Shale and Doig Phosphate in terms of total organic carbon (TOC) and porosity. The Montney Shale shows poor and inverse correlation to TOC, whereas the Doig Phosphate shows good and positive correlation indicative of organically derived porosity. The positive y-(porosity) intercept for the Doig indicates about 2% matrix porosity. The inverse correlation of the Montney Shale is suggestive of a hybrid system where porosity is derived primarily from matrix as opposed to organic porosity. BV = bulk volume; R2 = linear correlation coefficient.]] | | [[File:M97FG2.jpg|thumb|400px|{{figure number|2}}Comparison of Montney Shale and Doig Phosphate in terms of total organic carbon (TOC) and porosity. The Montney Shale shows poor and inverse correlation to TOC, whereas the Doig Phosphate shows good and positive correlation indicative of organically derived porosity. The positive y-(porosity) intercept for the Doig indicates about 2% matrix porosity. The inverse correlation of the Montney Shale is suggestive of a hybrid system where porosity is derived primarily from matrix as opposed to organic porosity. BV = bulk volume; R2 = linear correlation coefficient.]] |
| | | |
− | What are the characteristics of these shale resource plays that caused them to be either overlooked or ignored? It was certainly not their source rock characteristics because most are organic-rich source rocks at varying levels of thermal maturity that have sourced conventional oil and gas fields in virtually every basin where they have been exploited. Although their petroleum source potential is well known, their rock properties were very unattractive for reservoir potential amplified by their recognition as not only source rocks, but also as seal or cap rocks, certifying their nonreservoir properties. However, their retention and storage capacity for petroleum was largely ignored and mud gas log responses noted with the somewhat derogatory shale-gas moniker. Because these shale resource plays were a combination of source rocks and seals, the retention of hydrocarbons is a factor that was overlooked. Diffusion, albeit a slow process, suggested that oil and especially gas were mostly lost from such rocks over geologic time. For example, modeling petroleum generation in the Barnett Shale indicates that maximum generation may have been reached 250 Ma (Jarvie et al., 2005a). Because of a complex burial and uplift history, maximum generation could have been reached about 25 Ma, but nonetheless, retention of generated hydrocarbons to the present day was not perceived as likely or certainly not to a commercial extent. As such, even in a good seal rock, diffusion should have resulted in a substantial loss of gas, thereby limiting the resource potential of the system. The presence of fractures, although healed, and the presence of conventional oil and gas reservoirs in the Fort Worth Basin, suggested that expulsion and diffusion had possibly drained the shale. In addition, gas contents measured on the MEDC 1-Sims well, 1991, were not very encouraging, suggesting non-commercial amounts of gas (Steward, 2007). | + | What are the characteristics of these shale resource plays that caused them to be either overlooked or ignored? It was certainly not their source rock characteristics because most are organic-rich source rocks at varying levels of thermal maturity that have sourced conventional oil and gas fields in virtually every basin where they have been exploited. Although their petroleum source potential is well known, their rock properties were very unattractive for reservoir potential amplified by their recognition as not only source rocks, but also as seal or cap rocks, certifying their nonreservoir properties. However, their retention and storage capacity for petroleum was largely ignored and mud gas log responses noted with the somewhat derogatory shale-gas moniker. Because these shale resource plays were a combination of source rocks and seals, the retention of hydrocarbons is a factor that was overlooked. Diffusion, albeit a slow process, suggested that oil and especially gas were mostly lost from such rocks over geologic time. For example, modeling petroleum generation in the Barnett Shale indicates that maximum generation may have been reached 250 Ma (Jarvie et al., 2005a). Because of a complex burial and uplift history, maximum generation could have been reached about 25 Ma, but nonetheless, retention of generated hydrocarbons to the present day was not perceived as likely or certainly not to a commercial extent. As such, even in a good seal rock, diffusion should have resulted in a substantial loss of gas, thereby limiting the resource potential of the system. The presence of fractures, although healed, and the presence of conventional oil and gas reservoirs in the Fort Worth Basin, suggested that expulsion and diffusion had possibly drained the shale. In addition, gas contents measured on the MEDC 1-Sims well, 1991, were not very encouraging, suggesting non-commercial amounts of gas.<ref name=St2007 /> |
| | | |
| Overlooked were various characteristics of organic-rich mudstones. They certainly have the capacity to generate and expel hydrocarbons, but they also have retentive capacity and a self-created storage capacity. Data from Sandvik et al. (1992) and Pepper (1992) suggest that expulsion is a function of both original organic richness and hydrogen indices as they relate to a sorptive capacity of organic matter. The work by Pepper (1992) suggests that only about 60% of Barnett Shale petroleum should have been expelled, assuming an original hydrogen index (HIo) of 434 mg HC/g TOC. By difference, this suggests that 40% of the generated petroleum was retained in the Barnett Shale, with retained oil ultimately being cracked to gas and a carbonaceous char, if sufficient thermal maturity (gt1.4% vitrinite reflectance equivalency [Roe]) was reached. This retained fraction of primary and secondarily generated and retained gas readily accounts for all the gas in the Fort Worth Basin Barnett Shale (Jarvie et al., 2007). | | Overlooked were various characteristics of organic-rich mudstones. They certainly have the capacity to generate and expel hydrocarbons, but they also have retentive capacity and a self-created storage capacity. Data from Sandvik et al. (1992) and Pepper (1992) suggest that expulsion is a function of both original organic richness and hydrogen indices as they relate to a sorptive capacity of organic matter. The work by Pepper (1992) suggests that only about 60% of Barnett Shale petroleum should have been expelled, assuming an original hydrogen index (HIo) of 434 mg HC/g TOC. By difference, this suggests that 40% of the generated petroleum was retained in the Barnett Shale, with retained oil ultimately being cracked to gas and a carbonaceous char, if sufficient thermal maturity (gt1.4% vitrinite reflectance equivalency [Roe]) was reached. This retained fraction of primary and secondarily generated and retained gas readily accounts for all the gas in the Fort Worth Basin Barnett Shale (Jarvie et al., 2007). |
Line 44: |
Line 44: |
| In addition, work by Reed and Loucks (2007) and Loucks et al. (2009) showed that the development of organic porosity was a feature of Barnett Shale organic matter at gas window thermal maturity. This was speculated to provide a means of storage by Jarvie et al. (2006) because of the conversion of organic matter to gas and oil, some of which was expelled, ultimately creating pores associated with organic matter. Conversion of TOC from mass to volume shows that such organic porosity can be accounted for by organic matter conversion (Jarvie et al., 2007). Likewise, it was shown that such limited porosity (4–7%) can store sufficient gas under pressure-volume-temperature (PVT) conditions to account for the high volumes of gas in place (GIP) in the Barnett Shale. In fact, it is postulated that PVT conditions during maximum petroleum generation 250 Ma were much higher than the present day, and despite uplift, the gas storage capacity is actually higher than present-day PVT conditions would suggest. If any liquids are present, however, condensation of petroleum occurs to accommodate the fixed volume under the lower temperature and pressure conditions after uplift. As such, a two-phase petroleum system exists, and this is an important consideration, not only for the Barnett Shale, but also for other resource systems containing both liquid and gas whereby liquids can condense on pressure drawdown. | | In addition, work by Reed and Loucks (2007) and Loucks et al. (2009) showed that the development of organic porosity was a feature of Barnett Shale organic matter at gas window thermal maturity. This was speculated to provide a means of storage by Jarvie et al. (2006) because of the conversion of organic matter to gas and oil, some of which was expelled, ultimately creating pores associated with organic matter. Conversion of TOC from mass to volume shows that such organic porosity can be accounted for by organic matter conversion (Jarvie et al., 2007). Likewise, it was shown that such limited porosity (4–7%) can store sufficient gas under pressure-volume-temperature (PVT) conditions to account for the high volumes of gas in place (GIP) in the Barnett Shale. In fact, it is postulated that PVT conditions during maximum petroleum generation 250 Ma were much higher than the present day, and despite uplift, the gas storage capacity is actually higher than present-day PVT conditions would suggest. If any liquids are present, however, condensation of petroleum occurs to accommodate the fixed volume under the lower temperature and pressure conditions after uplift. As such, a two-phase petroleum system exists, and this is an important consideration, not only for the Barnett Shale, but also for other resource systems containing both liquid and gas whereby liquids can condense on pressure drawdown. |
| | | |
− | Proof of the Barnett Shale-gas resource potential was substantiated by the MEDC 3-Kathy Keele well (now named the K. P. Lipscomb 3-GU) drilled in 1999, where pressure core was taken (Steward, 2007). The result was an estimate of 2.13 times 109 m3/km2 (195 bcf/section), which exceeded previous estimates by about 250%. | + | Proof of the Barnett Shale-gas resource potential was substantiated by the MEDC 3-Kathy Keele well (now named the K. P. Lipscomb 3-GU) drilled in 1999, where pressure core was taken.<ref name=St2007 /> The result was an estimate of 2.13 times 109 m3/km2 (195 bcf/section), which exceeded previous estimates by about 250%. |
| | | |
| It should be noted that petroleum source rocks generate both oil and gas throughout the oil and early condensate-wet gas window. It is the relative proportion of oil to gas that describes the oil and gas windows; that is, oil is the predominant product in the oil window and gas in the gas window. Most of these plays are combination plays where both oil and gas are produced, the exception being dry gas window systems such as the Fayetteville Shale at 2.5% Ro. With the economic importance of liquid hydrocarbons, the pursuit of higher calorific gas with liquids or liquids with some gas has become the new paradigm. | | It should be noted that petroleum source rocks generate both oil and gas throughout the oil and early condensate-wet gas window. It is the relative proportion of oil to gas that describes the oil and gas windows; that is, oil is the predominant product in the oil window and gas in the gas window. Most of these plays are combination plays where both oil and gas are produced, the exception being dry gas window systems such as the Fayetteville Shale at 2.5% Ro. With the economic importance of liquid hydrocarbons, the pursuit of higher calorific gas with liquids or liquids with some gas has become the new paradigm. |
Line 74: |
Line 74: |
| One of the first and basic screening analyses for any source rock is organic richness, as measured by total organic carbon (TOC). The TOC is a measure of organic carbon present in a sediment sample, but it is not a measure of its generation potential alone, as that requires an assessment of hydrogen content or organic maceral percentages from chemical or visual kerogen assessments. As TOC values vary throughout a source rock because of organofacies differences and thermal maturity, and even depending on sample type, there has been a lengthy debate on what actual TOC values are needed to have a commercial source rock. All organic matter preserved in sediments will decompose into petroleum with sufficient temperature exposure; for EampP companies, it is a matter of the producibility and commerciality of such generation. In addition, the expulsion and retention of generated petroleum must be considered. However, original quantity (TOC) as well as source rock quality (type) of the source rock must be considered in combination to assess its petroleum generation potential. | | One of the first and basic screening analyses for any source rock is organic richness, as measured by total organic carbon (TOC). The TOC is a measure of organic carbon present in a sediment sample, but it is not a measure of its generation potential alone, as that requires an assessment of hydrogen content or organic maceral percentages from chemical or visual kerogen assessments. As TOC values vary throughout a source rock because of organofacies differences and thermal maturity, and even depending on sample type, there has been a lengthy debate on what actual TOC values are needed to have a commercial source rock. All organic matter preserved in sediments will decompose into petroleum with sufficient temperature exposure; for EampP companies, it is a matter of the producibility and commerciality of such generation. In addition, the expulsion and retention of generated petroleum must be considered. However, original quantity (TOC) as well as source rock quality (type) of the source rock must be considered in combination to assess its petroleum generation potential. |
| | | |
− | From a qualitative point of view, part of this issue includes the assessment of variations in quantitative TOC values that are altered by, for example, thermal maturity, sample collection technique, sample type (cuttings versus core chips), sample quality (e.g., fines only, cavings, contamination), and any high grading of core or cuttings samples. Documented variations in cuttings through the Fayetteville and Chattanooga shales illustrate variations due to sample type and quality as cuttings commonly have mixing effects. An overlying organic-lean sediment will dilute an organic-rich sample often for 10 to 40 ft (3 to 12 m). This is evident in some Fayetteville and Chattanooga wells with cuttings analysis, where the uppermost parts of the organic-rich shales have TOC values suggesting the shale to be organic lean. However, TOC values increase with deeper penetration into the organic-rich shale, to and through the base of the shale, but then also continuing into underlying organic-lean sediments, until finally decreasing to low values (Li et al., 2010a). This is a function of mixing of cuttings while drilling. The same issue in Barnett Shale wells was reported by MEDC (Steward, 2007), who also reported lower vitrinite reflectance values for cuttings than core (sim0.15% Ro lower). The big problem with this mixing effect is that it does not always occur and picking of cuttings does not typically solve the problem in shale-gas resource systems, although it may work in less mature systems. One solution is to minimize the quantitation of the uppermost sections (sim9 m [sim30 ft]) of a shale of interest when cuttings are used for analysis. The inverse of this situation is often identifiable in known organic-lean sediments below an organic-rich shale or coal. This latter effect is more obvious below coaly intervals, where TOC values will be high unless picked free of coal. | + | From a qualitative point of view, part of this issue includes the assessment of variations in quantitative TOC values that are altered by, for example, thermal maturity, sample collection technique, sample type (cuttings versus core chips), sample quality (e.g., fines only, cavings, contamination), and any high grading of core or cuttings samples. Documented variations in cuttings through the Fayetteville and Chattanooga shales illustrate variations due to sample type and quality as cuttings commonly have mixing effects. An overlying organic-lean sediment will dilute an organic-rich sample often for 10 to 40 ft (3 to 12 m). This is evident in some Fayetteville and Chattanooga wells with cuttings analysis, where the uppermost parts of the organic-rich shales have TOC values suggesting the shale to be organic lean. However, TOC values increase with deeper penetration into the organic-rich shale, to and through the base of the shale, but then also continuing into underlying organic-lean sediments, until finally decreasing to low values (Li et al., 2010a). This is a function of mixing of cuttings while drilling. The same issue in Barnett Shale wells was reported by MEDC,<ref name=St2007 /> who also reported lower vitrinite reflectance values for cuttings than core (sim0.15% Ro lower). The big problem with this mixing effect is that it does not always occur and picking of cuttings does not typically solve the problem in shale-gas resource systems, although it may work in less mature systems. One solution is to minimize the quantitation of the uppermost sections (sim9 m [sim30 ft]) of a shale of interest when cuttings are used for analysis. The inverse of this situation is often identifiable in known organic-lean sediments below an organic-rich shale or coal. This latter effect is more obvious below coaly intervals, where TOC values will be high unless picked free of coal. |
| | | |
| In any case, what is measured in any geochemical laboratory is strictly present-day TOC (TOCpd), which is dependent on all previously mentioned factors. In the absence of other factors, the decrease in original TOC (TOCo) is a function of thermal maturity due to the conversion of organic matter to petroleum and a carbonaceous char. The TOC measurements may include organic in oil or bitumen, which may not be completely removed during the typical decarbonation step before the LECO TOC analysis. Bitumen and oil-free TOC is described in various ways but always having two components whose distribution is dependent on the originally deposited and preserved biomass: generative organic carbon (GOC) and nongenerative organic carbon (NGOC) fractions. These have been referred to by various names without specifying bitumen and/or oil free (e.g., reactive and inert carbon; Cooles et al., 1986). As such, the GOC fraction has sufficient hydrogen to generate hydrocarbons, whereas the NGOC fraction does not yield substantial amounts of hydrocarbons. Decomposition of the GOC also creates organic porosity, which is directly proportional to the GOC fraction and its extent of conversion. The NGOC fraction accounts for adsorbed gas storage and some organic porosity development due to restructuring of the organic matrix. The creation of such organic porosity in a reducing environment creates sites for possible catalytic activity by carbonaceous char (Fuhrmann et al., 2003; Alexander et al., 2009) or other catalytic materials, for example, low valence transition metals (Mango, 1992, 1996). | | In any case, what is measured in any geochemical laboratory is strictly present-day TOC (TOCpd), which is dependent on all previously mentioned factors. In the absence of other factors, the decrease in original TOC (TOCo) is a function of thermal maturity due to the conversion of organic matter to petroleum and a carbonaceous char. The TOC measurements may include organic in oil or bitumen, which may not be completely removed during the typical decarbonation step before the LECO TOC analysis. Bitumen and oil-free TOC is described in various ways but always having two components whose distribution is dependent on the originally deposited and preserved biomass: generative organic carbon (GOC) and nongenerative organic carbon (NGOC) fractions. These have been referred to by various names without specifying bitumen and/or oil free (e.g., reactive and inert carbon; Cooles et al., 1986). As such, the GOC fraction has sufficient hydrogen to generate hydrocarbons, whereas the NGOC fraction does not yield substantial amounts of hydrocarbons. Decomposition of the GOC also creates organic porosity, which is directly proportional to the GOC fraction and its extent of conversion. The NGOC fraction accounts for adsorbed gas storage and some organic porosity development due to restructuring of the organic matrix. The creation of such organic porosity in a reducing environment creates sites for possible catalytic activity by carbonaceous char (Fuhrmann et al., 2003; Alexander et al., 2009) or other catalytic materials, for example, low valence transition metals (Mango, 1992, 1996). |
Line 397: |
Line 397: |
| * Rushing, J. A., A. Chaouche, and K. E. Newsham, 2004, A mass balance approach for assessing basin-centered gas prospects: Integrating reservoir engineering, geochemistry, and petrophysics, in J. M. Cubitt, W. A. England, and S. R. Larter, eds., Understanding petroleum reservoirs: Toward an integrated reservoir engineering and geochemical approach: Geological Society (London) Special Publication 237, p. 373–390. | | * Rushing, J. A., A. Chaouche, and K. E. Newsham, 2004, A mass balance approach for assessing basin-centered gas prospects: Integrating reservoir engineering, geochemistry, and petrophysics, in J. M. Cubitt, W. A. England, and S. R. Larter, eds., Understanding petroleum reservoirs: Toward an integrated reservoir engineering and geochemical approach: Geological Society (London) Special Publication 237, p. 373–390. |
| * Sandvik, E. I., W. A. Young, and D. J. Curry, 1992, Expulsion from hydrocarbon sources: The role of organic absorption: Advances in Organic Geochemistry 1991: Organic Geochemistry, v. 19, no. 1–3, p. 77–87, doi:10.1016/0146-6380(92)90028-V. | | * Sandvik, E. I., W. A. Young, and D. J. Curry, 1992, Expulsion from hydrocarbon sources: The role of organic absorption: Advances in Organic Geochemistry 1991: Organic Geochemistry, v. 19, no. 1–3, p. 77–87, doi:10.1016/0146-6380(92)90028-V. |
− | * Steward, D. B., 2007, The Barnett Shale play: Phoenix of the Fort Worth Basin—A history: The Fort Worth Geological Society and The North Texas Geological Society, ISBN 978-0-9792841-0-6, 202 p. | + | * |
| * | | * |
| * Zou, C.-n., S.-z. Tao, X.-h. Gao, Y. Li, Z. Yang, Y.-j. Gong, D.-z. Dong, X.-j. Le, et al., 2010, [http://www.searchanddiscovery.net/abstracts/pdf/2010/annual/abstracts/ndx_caineng.pdf Basic contents, geological features and evaluation methods of continuous oil/gas plays in China]: AAPG Search and Discovery Article 90104, 7 p. | | * Zou, C.-n., S.-z. Tao, X.-h. Gao, Y. Li, Z. Yang, Y.-j. Gong, D.-z. Dong, X.-j. Le, et al., 2010, [http://www.searchanddiscovery.net/abstracts/pdf/2010/annual/abstracts/ndx_caineng.pdf Basic contents, geological features and evaluation methods of continuous oil/gas plays in China]: AAPG Search and Discovery Article 90104, 7 p. |