Changes

Jump to navigation Jump to search
4 bytes added ,  14:09, 9 November 2015
no edit summary
Line 26: Line 26:  
'''2-D reflection seismic data''' provide cross-sectional views in both the dip and strike directions. Data on the lines are a mixture of both in-plane and out-of-plane reflectors. 2-D reflection seismic data are most important in the earlier stages of an exploration program, especially in frontier basins.
 
'''2-D reflection seismic data''' provide cross-sectional views in both the dip and strike directions. Data on the lines are a mixture of both in-plane and out-of-plane reflectors. 2-D reflection seismic data are most important in the earlier stages of an exploration program, especially in frontier basins.
   −
'''3-D reflection seismic data''' provide resolved cross-sectional views along any azimuth within the survey area. Time “slices” (maps) on any horizon can also be generated. The nature and location of out-of-plane features can be more accurately determined. Because of the high acquisition costs, 3-D seismic techniques normally are used only to more accurately define individual prospects.
+
'''3-D reflection seismic data''' provide resolved cross-sectional views along any [[azimuth]] within the survey area. Time “slices” (maps) on any horizon can also be generated. The nature and location of out-of-plane features can be more accurately determined. Because of the high acquisition costs, 3-D seismic techniques normally are used only to more accurately define individual prospects.
    
'''Shear wave data''', in combination with conventional compressional wave data, can provide information on lithology, [[fracture]]s, and the presence of hydrocarbons.
 
'''Shear wave data''', in combination with conventional compressional wave data, can provide information on lithology, [[fracture]]s, and the presence of hydrocarbons.

Navigation menu