Changes

Jump to navigation Jump to search
No change in size ,  20:36, 8 April 2019
Line 154: Line 154:  
Arsenic, in this area, is released into the groundwater and surface water through dissolution, weathering and erosion of the host rocks. Being an anion, it sticks to mineral surfaces especially iron from biotite.<ref name=Adeyinka /> This explains the mobility of iron and arsenic during weathering and deposition in the area.
 
Arsenic, in this area, is released into the groundwater and surface water through dissolution, weathering and erosion of the host rocks. Being an anion, it sticks to mineral surfaces especially iron from biotite.<ref name=Adeyinka /> This explains the mobility of iron and arsenic during weathering and deposition in the area.
   −
Results show that the concentration of arsenic in all the rock types at Kaltungo and the environs is far above the average [[crust]]al abundance of 2 ppm. Generally, the concentration ranges from 152.900 ppm to 235.200 ppm in the coarse porphyritic granite; it varies from 232.200 ppm to 243.100 ppm in the biotite granite. In the Bima Sandstone, the concentration ranges from 228.700 ppm to 87.540 ppm while in the basalts of the area, the range is from 174.600 ppm to 151.600 ppm.<ref name=Adeyinka />
+
Results show that the concentration of arsenic in all the rock types at Kaltungo and the environs is far above the average [[crust]]al abundance of 2 ppm. Generally, the concentration ranges from 152,900 ppm to 235,200 ppm in the coarse porphyritic granite; it varies from 232,200 ppm to 243,100 ppm in the biotite granite. In the Bima Sandstone, the concentration ranges from 228,700 ppm to 87,540 ppm while in the basalts of the area, the range is from 174,600 ppm to 151,600 ppm.<ref name=Adeyinka />
    
====Health impacts of excessive arsenic in groundwater in Zimbabwe====
 
====Health impacts of excessive arsenic in groundwater in Zimbabwe====

Navigation menu