Changes

Jump to navigation Jump to search
no edit summary
Line 7: Line 7:  
[[file:Wiki-Bronzemedal.jpeg|frameless|right]]
 
[[file:Wiki-Bronzemedal.jpeg|frameless|right]]
 
In-situ stress is the natural pre-existing stress confined in the rock before it is drilled, excavated or affected by outside influences. The in-situ stresses originate in the earth crust due to different factors, mainly the weight of the overlaying rock layers and tectonic movements ([[:File:GeoWikiWriteOff2021-Tayyib-Figure1.png|Figure 1]]). The other factors are summarized in [[:File:GeoWikiWriteOff2021-Tayyib-Figure2.png|Figure 2]]. The in-situ stress can vary within one rock mass from one location to another due to varying rock properties. It is important to determine the magnitude and direction of in-situ stresses before doing underground work or designing underground structures, see [[:File:GeoWikiWriteOff2021-Tayyib-Table1.png|Table 1]] for their different applications. In-situ stress characterization is the science of estimating the stress magnitudes and determining the orientation of three principle stresses: maximum horizontal stress, minimum horizontal stress, and vertical stress.
 
In-situ stress is the natural pre-existing stress confined in the rock before it is drilled, excavated or affected by outside influences. The in-situ stresses originate in the earth crust due to different factors, mainly the weight of the overlaying rock layers and tectonic movements ([[:File:GeoWikiWriteOff2021-Tayyib-Figure1.png|Figure 1]]). The other factors are summarized in [[:File:GeoWikiWriteOff2021-Tayyib-Figure2.png|Figure 2]]. The in-situ stress can vary within one rock mass from one location to another due to varying rock properties. It is important to determine the magnitude and direction of in-situ stresses before doing underground work or designing underground structures, see [[:File:GeoWikiWriteOff2021-Tayyib-Table1.png|Table 1]] for their different applications. In-situ stress characterization is the science of estimating the stress magnitudes and determining the orientation of three principle stresses: maximum horizontal stress, minimum horizontal stress, and vertical stress.
 +
 
<gallery mode=packed style=center heights=200px>
 
<gallery mode=packed style=center heights=200px>
 
File:GeoWikiWriteOff2021-Tayyib-Figure1.png|{{Figure number|1}}Movement of the tectonic plate (Earth’s outer shell: Crust & Lithospheric Mantle) generate in-situ stress (from Duarte & Schellart<ref>Duarte, J., C., and W. P. Schellart, 2016, Introduction to plate boundaries and natural hazards, ''in'' J. C. Duarte and W. P. Schellart, eds., Plate boundaries and natural hazards: AGU Geophysical Monograph Series 219, p. 1-10.</ref>).
 
File:GeoWikiWriteOff2021-Tayyib-Figure1.png|{{Figure number|1}}Movement of the tectonic plate (Earth’s outer shell: Crust & Lithospheric Mantle) generate in-situ stress (from Duarte & Schellart<ref>Duarte, J., C., and W. P. Schellart, 2016, Introduction to plate boundaries and natural hazards, ''in'' J. C. Duarte and W. P. Schellart, eds., Plate boundaries and natural hazards: AGU Geophysical Monograph Series 219, p. 1-10.</ref>).

Navigation menu