− | Analyzing air [[permeability]] (K<sub>a</sub> and [[porosity]] (Φ) data separately to characterize rock quality can be deceiving. Analyzing K<sub>a</sub> and Φ data using the K<sub>a</sub>/Φ ratio or the r<sub>35</sub> method<ref name=ch09r46>Pittman, E., D., 1992, Relationship of porosity to permeability to various parameters derived from mercury injection–[[capillary pressure]] curves for sandstone: AAPG Bulletin, vol. 76, no. 2, p. 191–198.</ref> is much more effective for determining quality. The K<sub>a</sub>/Φ ratio or the r<sub>35</sub> method yields information about the fluid flow and storage quality of a rock. | + | Analyzing air [[permeability]] (K<sub>a</sub> and [[porosity]] (Φ) data separately to characterize rock quality can be deceiving. Analyzing K<sub>a</sub> and Φ data using the K<sub>a</sub>/Φ ratio or the r<sub>35</sub> method<ref name=ch09r46>Pittman, E., D., 1992, [http://archives.datapages.com/data/bulletns/1992-93/data/pg/0076/0002/0000/0191.htm Relationship of porosity to permeability to various parameters derived from mercury injection–capillary pressure curves for sandstone]: AAPG Bulletin, vol. 76, no. 2, p. 191–198.</ref> is much more effective for determining quality. The K<sub>a</sub>/Φ ratio or the r<sub>35</sub> method yields information about the fluid flow and storage quality of a rock. |