Changes

Jump to navigation Jump to search
Line 31: Line 31:     
==Typical processing steps==
 
==Typical processing steps==
<gallery mode=packed widths = 600px>
+
<gallery mode=packed>
 
file:basic-seismic-processing_fig3.png|{{figure number|3}}The shot record of Figure 1 after the application of a gain recovery algorithm to replace the energy lost as the signal traverses the earth. © Landmark/ITA.
 
file:basic-seismic-processing_fig3.png|{{figure number|3}}The shot record of Figure 1 after the application of a gain recovery algorithm to replace the energy lost as the signal traverses the earth. © Landmark/ITA.
 
file:basic-seismic-processing_fig4.png|{{figure number|4}}The shot record after a statistical deconvolution process has been applied to “shorten” the wavelet and increase time resolution. Copyright Landmark/ITA.
 
file:basic-seismic-processing_fig4.png|{{figure number|4}}The shot record after a statistical deconvolution process has been applied to “shorten” the wavelet and increase time resolution. Copyright Landmark/ITA.
 
file:basic-seismic-processing_fig5-part1.jpg|{{figure number|5a}}The application of statics corrects for differences in arrival time caused by elevation or weathering. (a) The valley in the data to the left of station 1500 represents an anomaly that persists throughout the time length of the record. Copyright Landmark/ITA.
 
file:basic-seismic-processing_fig5-part1.jpg|{{figure number|5a}}The application of statics corrects for differences in arrival time caused by elevation or weathering. (a) The valley in the data to the left of station 1500 represents an anomaly that persists throughout the time length of the record. Copyright Landmark/ITA.
file:basic-seismic-processing_fig5-part2.jpg||{{figure number|5b}}The application of statics corrects for differences in arrival time caused by elevation or weathering. (b) This “static” effect has been corrected. Copyright Landmark/ITA.
+
file:basic-seismic-processing_fig5-part2.jpg|{{figure number|5b}}The application of statics corrects for differences in arrival time caused by elevation or weathering. (b) This “static” effect has been corrected. Copyright Landmark/ITA.
file:basic-seismic-processing_fig6.jpg|{{figure number|6}}(a) A gather of processed traces with a common surface location. Shot-to-receiver offset is zero at the center of the gather and increases to about 2000 m deep on either end. The offset related curvature of the reflections is due to normal moveout. (b) Normal moveout correction (NMO) has been applied and the horizons are flat. The gather is now ready to be summed or stacked to produce one trace on Figure 2. Copyright Landmark/ITA.
   
</gallery>
 
</gallery>
   Line 78: Line 77:     
===Normal moveout (NMO) correction===
 
===Normal moveout (NMO) correction===
 +
 +
[[file:basic-seismic-processing_fig6.jpg|thumb|300px|{{figure number|6}}(a) A gather of processed traces with a common surface location. Shot-to-receiver offset is zero at the center of the gather and increases to about 2000 m deep on either end. The offset related curvature of the reflections is due to normal moveout. (b) Normal moveout correction (NMO) has been applied and the horizons are flat. The gather is now ready to be summed or stacked to produce one trace on Figure 2. Copyright Landmark/ITA.]]
    
The reflection from a given horizon does not arrive at the same time at different receivers along the length of the seismic cable or spread (see “Seismic Migration”). However, if the velocity at which the sound traveled is known, the arrival time difference (moveout) at each station can be predicted. Conversely, knowing the arrival time difference, the velocity the sound traveled can be determined under certain model assumptions. Usually the velocity of the earth as a function of time is determined at a few locations over the survey. This model can then be used to calculate moveout as a function of time everywhere in the survey. The moveout is subtracted from each seismic record such that the reflections from a given horizon will appear flat. This facilitates identification of reflectors and stacking. [[:file:basic-seismic-processing_fig6.jpg|Figure 6]] demonstrates the NMO process.
 
The reflection from a given horizon does not arrive at the same time at different receivers along the length of the seismic cable or spread (see “Seismic Migration”). However, if the velocity at which the sound traveled is known, the arrival time difference (moveout) at each station can be predicted. Conversely, knowing the arrival time difference, the velocity the sound traveled can be determined under certain model assumptions. Usually the velocity of the earth as a function of time is determined at a few locations over the survey. This model can then be used to calculate moveout as a function of time everywhere in the survey. The moveout is subtracted from each seismic record such that the reflections from a given horizon will appear flat. This facilitates identification of reflectors and stacking. [[:file:basic-seismic-processing_fig6.jpg|Figure 6]] demonstrates the NMO process.

Navigation menu