Changes

Jump to navigation Jump to search
no edit summary
Line 16: Line 16:     
==Introduction==
 
==Introduction==
Basin modeling is an increasingly important element of exploration, development, and production workflows. Problems addressed with basin models typically include questions regarding burial history, source maturation, hydrocarbon yields (timing and volume), [[hydrocarbon migration]], hydrocarbon type and quality, reservoir quality, and reservoir pressure and temperature prediction for pre–drill analysis. As computing power and software capabilities increase, the size and complexity of basin models also increase. These larger, more complex models address multiple scales (well to basin) and problems of variable intricacy, making it more important than ever to understand how the uncertainties in input parameters affect model results.
+
Basin modeling is an increasingly important element of exploration, development, and production workflows. Problems addressed with basin models typically include questions regarding burial history, source [[maturation]], hydrocarbon yields (timing and volume), [[hydrocarbon migration]], hydrocarbon type and quality, reservoir quality, and reservoir pressure and temperature prediction for pre–drill analysis. As computing power and software capabilities increase, the size and complexity of basin models also increase. These larger, more complex models address multiple scales (well to basin) and problems of variable intricacy, making it more important than ever to understand how the uncertainties in input parameters affect model results.
    
Increasingly complex basin models require an ever-increasing number of input parameters with values that are likely to vary both spatially and temporally. Some of the input parameters that are commonly used in basin models and their potential effect on model results are listed in Table 1. For a basin model to be successful, the modeler must not only determine the most appropriate estimate for the value for each input parameter, but must also understand the range of uncertainty associated with these estimates and the uncertainties related to the assumptions, approximations, and mathematical limitations of the software. This second type of uncertainty may involve fundamental physics that are not adequately modeled by the software and/or the numerical schemes used to solve the underlying partial differential equations. Although these issues are not addressed in this article or by the proposed workflow, basin modelers should be aware of these issues and consider them in any final recommendations or conclusions.
 
Increasingly complex basin models require an ever-increasing number of input parameters with values that are likely to vary both spatially and temporally. Some of the input parameters that are commonly used in basin models and their potential effect on model results are listed in Table 1. For a basin model to be successful, the modeler must not only determine the most appropriate estimate for the value for each input parameter, but must also understand the range of uncertainty associated with these estimates and the uncertainties related to the assumptions, approximations, and mathematical limitations of the software. This second type of uncertainty may involve fundamental physics that are not adequately modeled by the software and/or the numerical schemes used to solve the underlying partial differential equations. Although these issues are not addressed in this article or by the proposed workflow, basin modelers should be aware of these issues and consider them in any final recommendations or conclusions.

Navigation menu