Changes

Jump to navigation Jump to search
no edit summary
Line 1: Line 1:  +
{{publication
 +
| image  = BULTNjun2015.jpg
 +
| width  = 120px
 +
| series  = ''AAPG Bulletin,'' June 2015
 +
| title  = Three-dimensional modeling of clinoforms in shallow-marine reservoirs: Part 1. Concepts and application
 +
| part    =
 +
| chapter =
 +
| frompg  = 1017
 +
| topg    = 1047
 +
| author  = Gavin H. Graham, Matthew D. Jackson, and Gary J. Hampson
 +
| link    = http://archives.datapages.com/data/bulletns/2015/06jun/BLTN13190/BLTN13190.html
 +
| pdf    =
 +
| store  =
 +
| isbn    =
 +
}}
 
Key factors influencing fluid flow and reservoir behavior include facies architecture and heterogeneity distribution conditioned to stratal surfaces. Within shallow-marine reservoirs, clinoforms are one such type of stratal surface. Clinoforms are dipping surfaces having geometry that preserves the depositional morphology of the delta-front or shoreface slope; and their distribution reflects the progradation history of the shoreline (Barrell, 1912; Rich, 1951; Gani and Bhattacharya, 2005; Sech et al., 2009) (Figure 1). Clinoforms control aspects of detailed facies architecture within parasequences and can also act as low-permeability barriers or baffles to flow (Wehr and Brasher, 1996; Ainsworth et al., 1999; Dutton et al., 2000; Howell et al., 2008a, b; Jackson et al., 2009; Enge and Howell, 2010). Therefore, it is important to include clinoforms in models of shallow-marine reservoirs to properly characterize facies architecture and volumes of hydrocarbons in place (Sech et al., 2009). Under certain displacement conditions and if the clinoforms are associated with significant barriers to flow, clinoforms must be included in dynamic simulations to accurately predict likely drainage patterns and ultimate recovery of hydrocarbons (Jackson et al., 2009).
 
Key factors influencing fluid flow and reservoir behavior include facies architecture and heterogeneity distribution conditioned to stratal surfaces. Within shallow-marine reservoirs, clinoforms are one such type of stratal surface. Clinoforms are dipping surfaces having geometry that preserves the depositional morphology of the delta-front or shoreface slope; and their distribution reflects the progradation history of the shoreline (Barrell, 1912; Rich, 1951; Gani and Bhattacharya, 2005; Sech et al., 2009) (Figure 1). Clinoforms control aspects of detailed facies architecture within parasequences and can also act as low-permeability barriers or baffles to flow (Wehr and Brasher, 1996; Ainsworth et al., 1999; Dutton et al., 2000; Howell et al., 2008a, b; Jackson et al., 2009; Enge and Howell, 2010). Therefore, it is important to include clinoforms in models of shallow-marine reservoirs to properly characterize facies architecture and volumes of hydrocarbons in place (Sech et al., 2009). Under certain displacement conditions and if the clinoforms are associated with significant barriers to flow, clinoforms must be included in dynamic simulations to accurately predict likely drainage patterns and ultimate recovery of hydrocarbons (Jackson et al., 2009).
  

Navigation menu