Changes

Jump to navigation Jump to search
39 bytes added ,  17:55, 3 February 2014
Line 171: Line 171:     
===Additional applications===
 
===Additional applications===
Capillary pressure data can also be applied to help distinguish reservoir from nonreservoir and pay from nonpay (see [[Effective pay determination]]). Several workers have attempted to correlate capillary pressure data and brine or air permeabilities. Purcell related capillary pressures empirically to air [[permeability]] through the graphical integral of the curve of mercury saturation versus reciprocal capillary pressure squared. Swanson<ref name=Swanson_1981>Swanson, R. G., 1981, Sample examination manual:AAPG Methods in Exploration Series, 35 p.</ref> proposed a simple nomograph whose application improved estimation of brine [[permeability]] from capillary pressure measurements on sidewall cores and ditch cuttings.
+
Capillary pressure data can also be applied to help distinguish reservoir from nonreservoir and pay from nonpay (see [[Effective pay determination]]). Several workers have attempted to correlate capillary pressure data and brine or air permeabilities. Purcell related capillary pressures empirically to air [[permeability]] through the graphical integral of the curve of mercury saturation versus reciprocal capillary pressure squared. Swanson<ref name=Swanson_1981>Swanson, R. G., 1981, Sample examination manual: [http://store.aapg.org/detail.aspx?id=603 AAPG Methods in Exploration 1], 35 p.</ref> proposed a simple nomograph whose application improved estimation of brine [[permeability]] from capillary pressure measurements on sidewall cores and ditch cuttings.
    
Another type of mercury test involves injecting mercury to a saturation less than the maximum, withdrawing the mercury to some residual wetting phase saturation, and then reinjecting the mercury. This process, repeated several times to progressively higher maximum pressures, produces hysteresis loops. These loops, wherein mercury is partially withdrawn and then reinjected, can be used to investigate withdrawal efficiency at various initial saturations.<ref name=Morrow_1970>Morrow, N. R., 1970, Irreducible wetting phase saturations in porous media: Chemical Engineering Science, v. 25, p. 1799-1815.</ref> <ref name=Melrose_etal_1974>Melrose, J. C., and C. F. Brandner, 1974, Role of capillary forces in determining microscopic displacement efficiency for oil recovery by [[waterflooding]]: Journal Canadian Petroleum Technology, v. 13, p. 54-62.</ref> <ref name=Wardlaw_etal_1976>Wardlaw, N. C., and R. P. Taylor, 1976, Mercury capillary pressure curves and the interpretation of pore structures and capillary behavior in reservoir rocks: Bulletin of Canadian Petroleum Geology, v. 24, p. 225-262.</ref> <ref name=Wardlaw_etal_1978>Wardlaw, N. C., and J. P. Cassan, 1978, Estimation of recovery efficiency by visual observation of pore systems in reservoir rocks: Bulletin of Canadian Petroleum Geology, v. 26, p. 572-585.</ref> <ref name=Wardlaw_etal_1988>Wardlaw, N. C., M. McKellar, and Y. Li, 1988, Pore and throat size distribution determined by mercury porosimetry and by direct observation: Carbonates and Evaporites, v. 3, p. 1-15.</ref> Results suggest that the higher the initial saturation of the nonwetting phase, the greater the withdrawal efficiency. Porosimetry uses hysteresis loops to interpret pore body and pore throat size distributions and their partial arrangement.<ref name=Dullien_etal_1974>Dullien, F. A. L., and G. K. Dhawan, 1974, Characterization of pore structure by a combination of quantitative photomicrography and mercury porosimetry: Journal Colloid and Interface Science, v. 47, p. 337-349.</ref> <ref name=Wardlaw_etal_1988 /> Pore sizes have also been evaluated with rate-controlled mercury injection.<ref name=Yuan_etal_1986>Yuan, H. H., and B. F. Swanson, 1986, Resolving pore space characteristics by rate-controlled porosimetry: 5th Symposium on [[Enhanced oil recovery]] of the Society of Petroleum Engineers and the Department of Energy, April, SPE/DOE 14892, 9 p.</ref>
 
Another type of mercury test involves injecting mercury to a saturation less than the maximum, withdrawing the mercury to some residual wetting phase saturation, and then reinjecting the mercury. This process, repeated several times to progressively higher maximum pressures, produces hysteresis loops. These loops, wherein mercury is partially withdrawn and then reinjected, can be used to investigate withdrawal efficiency at various initial saturations.<ref name=Morrow_1970>Morrow, N. R., 1970, Irreducible wetting phase saturations in porous media: Chemical Engineering Science, v. 25, p. 1799-1815.</ref> <ref name=Melrose_etal_1974>Melrose, J. C., and C. F. Brandner, 1974, Role of capillary forces in determining microscopic displacement efficiency for oil recovery by [[waterflooding]]: Journal Canadian Petroleum Technology, v. 13, p. 54-62.</ref> <ref name=Wardlaw_etal_1976>Wardlaw, N. C., and R. P. Taylor, 1976, Mercury capillary pressure curves and the interpretation of pore structures and capillary behavior in reservoir rocks: Bulletin of Canadian Petroleum Geology, v. 24, p. 225-262.</ref> <ref name=Wardlaw_etal_1978>Wardlaw, N. C., and J. P. Cassan, 1978, Estimation of recovery efficiency by visual observation of pore systems in reservoir rocks: Bulletin of Canadian Petroleum Geology, v. 26, p. 572-585.</ref> <ref name=Wardlaw_etal_1988>Wardlaw, N. C., M. McKellar, and Y. Li, 1988, Pore and throat size distribution determined by mercury porosimetry and by direct observation: Carbonates and Evaporites, v. 3, p. 1-15.</ref> Results suggest that the higher the initial saturation of the nonwetting phase, the greater the withdrawal efficiency. Porosimetry uses hysteresis loops to interpret pore body and pore throat size distributions and their partial arrangement.<ref name=Dullien_etal_1974>Dullien, F. A. L., and G. K. Dhawan, 1974, Characterization of pore structure by a combination of quantitative photomicrography and mercury porosimetry: Journal Colloid and Interface Science, v. 47, p. 337-349.</ref> <ref name=Wardlaw_etal_1988 /> Pore sizes have also been evaluated with rate-controlled mercury injection.<ref name=Yuan_etal_1986>Yuan, H. H., and B. F. Swanson, 1986, Resolving pore space characteristics by rate-controlled porosimetry: 5th Symposium on [[Enhanced oil recovery]] of the Society of Petroleum Engineers and the Department of Energy, April, SPE/DOE 14892, 9 p.</ref>

Navigation menu