Changes

Jump to navigation Jump to search
no edit summary
Line 39: Line 39:  
[[file:full-waveform-acoustic-logging_fig3.png|thumb|300px|{{figure number|3}}Plot of the difference between the measured slowness and the predicted elastic slowness (ΔΔT) against the core measured permeability values for both the [[limestone]]-[[dolomite]] and the sand-shale examples. (After Burns et al.<ref name=pt07r3 />)]]
 
[[file:full-waveform-acoustic-logging_fig3.png|thumb|300px|{{figure number|3}}Plot of the difference between the measured slowness and the predicted elastic slowness (ΔΔT) against the core measured permeability values for both the [[limestone]]-[[dolomite]] and the sand-shale examples. (After Burns et al.<ref name=pt07r3 />)]]
   −
The most direct use of FWAL is the measurement of formation shear wave velocity. Together with P wave velocity and density, one can obtain the shear modulus and compressibility of the formation, which are very important in engineering applications. P wave to S wave velocity ratio is a good indicator for lithology, and borehole S wave velocity information is necessary for tie-in with shear wave reflection profiles, amplitude versus offset studies, and elastic wave equation migrations, among many other uses.
+
The most direct use of FWAL is the measurement of formation shear wave velocity. Together with P wave velocity and density, one can obtain the shear modulus and compressibility of the formation, which are very important in engineering applications. P wave to S wave velocity ratio is a good indicator for lithology, and borehole S wave velocity information is necessary for tie-in with shear wave reflection profiles, amplitude versus [[offset]] studies, and elastic wave equation migrations, among many other uses.
    
The FWAL is also commonly used to identify and characterize fractures. Fractures are easily identified by a significant attenuation in all the wave modes—P, S, and Stoneley. An example of data across a fracture zone is shown in [[:file:full-waveform-acoustic-logging_fig2.png|Figure 2]]. Various models are available to estimate the permeability of the fracture from the Stoneley wave attenuation across a fracture<ref name=pt07r44>Paillet, F. L., 1983, Acoustic characterization of fracture permeability at Chalk River, Ontario, Canada: Canadian Geotechnical Journal, v. 20, p. 468–476, DOI: 10.1139/t83-055.</ref> <ref name=pt07r57>Tang, X. M., and C. H. Cheng, 1989, A dynamic model for fluid flow in open borehole fractures: Journal of Geophysical Research, v. 94, p. 7567–7576, DOI: 10.1029/JB094iB06p07567.</ref> and reflection from a fracture.<ref name=pt07r21>Hornby, B. E., D. L. Johnson, K. W. Winkler, and R. A. Plumb, 1989, Fracture evaluation using reflected Stoneley wave arrivals: Geophysics, v. 54, p. 1274–2188, DOI: 10.1190/1.1442587.</ref>
 
The FWAL is also commonly used to identify and characterize fractures. Fractures are easily identified by a significant attenuation in all the wave modes—P, S, and Stoneley. An example of data across a fracture zone is shown in [[:file:full-waveform-acoustic-logging_fig2.png|Figure 2]]. Various models are available to estimate the permeability of the fracture from the Stoneley wave attenuation across a fracture<ref name=pt07r44>Paillet, F. L., 1983, Acoustic characterization of fracture permeability at Chalk River, Ontario, Canada: Canadian Geotechnical Journal, v. 20, p. 468–476, DOI: 10.1139/t83-055.</ref> <ref name=pt07r57>Tang, X. M., and C. H. Cheng, 1989, A dynamic model for fluid flow in open borehole fractures: Journal of Geophysical Research, v. 94, p. 7567–7576, DOI: 10.1029/JB094iB06p07567.</ref> and reflection from a fracture.<ref name=pt07r21>Hornby, B. E., D. L. Johnson, K. W. Winkler, and R. A. Plumb, 1989, Fracture evaluation using reflected Stoneley wave arrivals: Geophysics, v. 54, p. 1274–2188, DOI: 10.1190/1.1442587.</ref>

Navigation menu