Changes

Jump to navigation Jump to search
no edit summary
Line 15: Line 15:  
[[file:Geological_time_spiral.png|thumb|400px|The geologic time spiral.<ref name=USGS_2008>United States Geological Survey, 2008, Joseph Graham, William Newman, and John Stacy, [http://pubs.usgs.gov/gip/2008/58/ The geologic time spiral—A path to the past] (ver. 1.1): U.S. Geological Survey General Information Product 58.</ref>]]
 
[[file:Geological_time_spiral.png|thumb|400px|The geologic time spiral.<ref name=USGS_2008>United States Geological Survey, 2008, Joseph Graham, William Newman, and John Stacy, [http://pubs.usgs.gov/gip/2008/58/ The geologic time spiral—A path to the past] (ver. 1.1): U.S. Geological Survey General Information Product 58.</ref>]]
   −
Petroleum [[reservoir]]s may contain any of the three fluid phases—water ([[brine]]), oil, or [[natural gas|gas]]. The initial distribution of phases depends on depth, [[Wikipedia:Temperature|temperature]], [[Wikipedia:Pressure|pressure]], composition, [[migration|historical migration]], type of geological [[trap]], and [[Geological heterogeneities|reservoir heterogeneity]] (that is, varying rock properties). The forces that originally distribute the fluids are [[gravity]], [[Capillary pressure|capillary]], [[molecular diffusion]], [[thermal convection]], and pressure gradients. It is generally assumed that reservoir fluids are in a static state when discovered or, more correctly, that fluids are moving at a very slow rate relative to the time required to extract the fluids (10 to 50 years). Clearly the fluids may still be in a dynamic state in terms of [[:file:Geological_time_spiral.png|geological time]].
+
Petroleum [[reservoir]]s may contain any of the three fluid phases—water ([[brine]]), [[oil]], or [[natural gas|gas]]. The initial distribution of phases depends on depth, [[Wikipedia:Temperature|temperature]], [[Wikipedia:Pressure|pressure]], composition, [[migration|historical migration]], type of geological [[trap]], and [[Geological heterogeneities|reservoir heterogeneity]] (that is, varying rock properties). The forces that originally distribute the fluids are [[gravity]], [[Capillary pressure|capillary]], [[molecular diffusion]], [[thermal convection]], and pressure gradients. It is generally assumed that reservoir fluids are in a static state when discovered or, more correctly, that fluids are moving at a very slow rate relative to the time required to extract the fluids (10 to 50 years). Clearly the fluids may still be in a dynamic state in terms of [[:file:Geological_time_spiral.png|geological time]].
    
Because gravity is the dominant force in distributing fluids through geological time, [[hydrocarbon]]s migrate upward and are trapped against impermeable cap rock. Gas overlies oil, which overlies water. However, because the [[reservoir]] pores are usually saturated completely by water before hydrocarbon [[migration]] and because capillary forces acting to retain water in the smallest pores exceed gravity forces, an initial ([[connate]]) [[water saturation]] will always be found in hydrocarbon-bearing formations. The connate water saturation may vary from 5 to 50% with the hydrocarbons still having sufficient mobility to produce at economical rates.
 
Because gravity is the dominant force in distributing fluids through geological time, [[hydrocarbon]]s migrate upward and are trapped against impermeable cap rock. Gas overlies oil, which overlies water. However, because the [[reservoir]] pores are usually saturated completely by water before hydrocarbon [[migration]] and because capillary forces acting to retain water in the smallest pores exceed gravity forces, an initial ([[connate]]) [[water saturation]] will always be found in hydrocarbon-bearing formations. The connate water saturation may vary from 5 to 50% with the hydrocarbons still having sufficient mobility to produce at economical rates.
4,231

edits

Navigation menu