Changes

Jump to navigation Jump to search
m
Line 15: Line 15:  
[[file:Geological_time_spiral.png|thumb|400px|The geologic time spiral.<ref name=USGS_2008>United States Geological Survey, 2008, Joseph Graham, William Newman, and John Stacy, [http://pubs.usgs.gov/gip/2008/58/ The geologic time spiral—A path to the past] (ver. 1.1): U.S. Geological Survey General Information Product 58.</ref>]]
 
[[file:Geological_time_spiral.png|thumb|400px|The geologic time spiral.<ref name=USGS_2008>United States Geological Survey, 2008, Joseph Graham, William Newman, and John Stacy, [http://pubs.usgs.gov/gip/2008/58/ The geologic time spiral—A path to the past] (ver. 1.1): U.S. Geological Survey General Information Product 58.</ref>]]
   −
Petroleum [[reservoir]]s may contain any of the three fluid phases—water (brine), oil, or gas. The initial distribution of phases depends on depth, [[Wikipedia:Temperature|temperature]], [[Wikipedia:Pressure|pressure]], composition, [[migration|historical migration]], type of geological [[trap]], and [[Geological heterogeneities|reservoir heterogeneity]] (that is, varying rock properties). The forces that originally distribute the fluids are [[gravity]], [[Capillary pressure|capillary]], [[molecular diffusion]], [[thermal convection]], and pressure gradients. It is generally assumed that reservoir fluids are in a static state when discovered or, more correctly, that fluids are moving at a very slow rate relative to the time required to extract the fluids (10 to 50 years). Clearly the fluids may still be in a dynamic state in terms of [[:file:Geological_time_spiral.png|geological time]].
+
[[Petroleum]] [[reservoir]]s may contain any of the three fluid phases—water (brine), oil, or gas. The initial distribution of phases depends on depth, [[Wikipedia:Temperature|temperature]], [[Wikipedia:Pressure|pressure]], composition, [[migration|historical migration]], type of geological [[trap]], and [[Geological heterogeneities|reservoir heterogeneity]] (that is, varying rock properties). The forces that originally distribute the fluids are [[gravity]], [[Capillary pressure|capillary]], [[molecular diffusion]], [[thermal convection]], and pressure gradients. It is generally assumed that reservoir fluids are in a static state when discovered or, more correctly, that fluids are moving at a very slow rate relative to the time required to extract the fluids (10 to 50 years). Clearly the fluids may still be in a dynamic state in terms of [[:file:Geological_time_spiral.png|geological time]].
    
Because gravity is the dominant force in distributing fluids through geological time, [[hydrocarbon]]s migrate upward and are trapped against impermeable [http://www.oxforddictionaries.com/us/definition/american_english/cap-rock cap rock]. Gas overlies oil, which overlies water. However, because the reservoir pores are usually saturated completely by water before hydrocarbon [[migration]] and because capillary forces acting to retain water in the smallest pores exceed gravity forces, an initial ([[connate]]) [[water saturation]] will always be found in hydrocarbon-bearing formations. The connate water saturation may vary from 5 to 50% with the hydrocarbons still having sufficient mobility to produce at economical rates.
 
Because gravity is the dominant force in distributing fluids through geological time, [[hydrocarbon]]s migrate upward and are trapped against impermeable [http://www.oxforddictionaries.com/us/definition/american_english/cap-rock cap rock]. Gas overlies oil, which overlies water. However, because the reservoir pores are usually saturated completely by water before hydrocarbon [[migration]] and because capillary forces acting to retain water in the smallest pores exceed gravity forces, an initial ([[connate]]) [[water saturation]] will always be found in hydrocarbon-bearing formations. The connate water saturation may vary from 5 to 50% with the hydrocarbons still having sufficient mobility to produce at economical rates.
Line 85: Line 85:  
The water found in petroleum reservoirs is usually a ''brine'' consisting mostly of sodium chloride (NaCl) in quantities from 10 to 350 ppt (‰); seawater has about 35 ppt. Other compounds (electrolytes) found in reservoir brines include calcium (Ca), magnesium (Mg), sulfate (SO<sub>4</sub>), bicarbonate (HCO<sub>3</sub>), iodide (I), and bromide (Br). Brine specific gravity increases with salinity in units of about 0.075 per 100 ppt.
 
The water found in petroleum reservoirs is usually a ''brine'' consisting mostly of sodium chloride (NaCl) in quantities from 10 to 350 ppt (‰); seawater has about 35 ppt. Other compounds (electrolytes) found in reservoir brines include calcium (Ca), magnesium (Mg), sulfate (SO<sub>4</sub>), bicarbonate (HCO<sub>3</sub>), iodide (I), and bromide (Br). Brine specific gravity increases with salinity in units of about 0.075 per 100 ppt.
   −
At reservoir conditions, the brine that is sharing pore space with hydrocarbons always contains a limited amount of [[solution gas]] (mainly methane), from about 10 SCF/STB at 1000 psia to about 35 SCF/STB at 10,000 psia for gas-water systems and slightly less for oil-water systems. Increasing salinity decreases gas in solution. [http://water.usgs.gov/edu/compressibility.html Water compressibility] ranges from 2.5 to 5 × 10<sup>–6</sup> psi<sup>–1</sup>, decreasing with increasing salinity. Water [[Wikipedia:Viscosity|viscosity]] ranges from about 0.3 cP at high temperatures (>[[temperature::250&deg;F]]) to about 1 cP at ambient temperatures, increasing with increasing salinity. Finally, reservoir brines exhibit only slight shrinkage (<5%) when produced to the surface.
+
At reservoir conditions, the brine that is sharing pore space with hydrocarbons always contains a limited amount of [[solution gas]] (mainly methane), from about 10 SCF/STB at 1000 psia to about 35 SCF/STB at 10,000 psia for gas-water systems and slightly less for oil-water systems. Increasing salinity decreases gas in solution. [http://water.usgs.gov/edu/compressibility.html Water compressibility] ranges from 2.5 to 5 × 10<sup>–6</sup> psi<sup>–1</sup>, decreasing with increasing salinity. Water [[viscosity]] ranges from about 0.3 cP at high temperatures (>[[temperature::250&deg;F]]) to about 1 cP at ambient temperatures, increasing with increasing salinity. Finally, reservoir brines exhibit only slight shrinkage (<5%) when produced to the surface.
    
==Petroleum reservoir classifications==
 
==Petroleum reservoir classifications==
Line 337: Line 337:  
* [[Conducting a reservoir simulation study: an overview]]
 
* [[Conducting a reservoir simulation study: an overview]]
 
* [[Introduction to reservoir engineering methods]]
 
* [[Introduction to reservoir engineering methods]]
 +
* [[Reservoir fluids]]
    
==References==
 
==References==
Line 347: Line 348:     
[[Category:Reservoir engineering methods]]
 
[[Category:Reservoir engineering methods]]
 +
[[Category:Methods in Exploration 10]]

Navigation menu