Changes

Jump to navigation Jump to search
Line 80: Line 80:  
The reflection from a given horizon does not arrive at the same time at different receivers along the length of the seismic cable or spread (see “Seismic Migration”). However, if the velocity at which the sound traveled is known, the arrival time difference (moveout) at each station can be predicted. Conversely, knowing the arrival time difference, the velocity the sound traveled can be determined under certain model assumptions. Usually the velocity of the earth as a function of time is determined at a few locations over the survey. This model can then be used to calculate moveout as a function of time everywhere in the survey. The moveout is subtracted from each seismic record such that the reflections from a given horizon will appear flat. This facilitates identification of reflectors and stacking. Figure 6 demonstrates the NMO process.
 
The reflection from a given horizon does not arrive at the same time at different receivers along the length of the seismic cable or spread (see “Seismic Migration”). However, if the velocity at which the sound traveled is known, the arrival time difference (moveout) at each station can be predicted. Conversely, knowing the arrival time difference, the velocity the sound traveled can be determined under certain model assumptions. Usually the velocity of the earth as a function of time is determined at a few locations over the survey. This model can then be used to calculate moveout as a function of time everywhere in the survey. The moveout is subtracted from each seismic record such that the reflections from a given horizon will appear flat. This facilitates identification of reflectors and stacking. Figure 6 demonstrates the NMO process.
   −
[[file:basic-seismic-processing_fig6.png|thumb|{{figure number|6}}(a) A gather of processed traces with a common surface location. Shot-to-receiver offset is zero at the center of the gather and increases to about [[depth::2000 m]] on either end. The offset related curvature of the reflections is due to normal moveout. (b) Normal moveout correction (NMO) has been applied and the horizons are flat. The gather is now ready to be summed or stacked to produce one trace on Figure 2. © Landmark/ITA.]]
+
[[file:basic-seismic-processing_fig6.png|thumb|{{figure number|6}}(a) A gather of processed traces with a common surface location. Shot-to-receiver offset is zero at the center of the gather and increases to about 2000 m deep on either end. The offset related curvature of the reflections is due to normal moveout. (b) Normal moveout correction (NMO) has been applied and the horizons are flat. The gather is now ready to be summed or stacked to produce one trace on Figure 2. © Landmark/ITA.]]
    
===Dip moveout (DMO) correction===
 
===Dip moveout (DMO) correction===

Navigation menu