Changes

Jump to navigation Jump to search
no edit summary
Line 49: Line 49:  
'''b) Aki, Richard and Frasier Approximation (1976)'''
 
'''b) Aki, Richard and Frasier Approximation (1976)'''
 
Bortfeld approximation then revised by Richard-Frasier (1976) and by Richard-Aki (1980). Approximation of Richard-Frasier is giving a simple equation because it is written in a clear three forms, namely the right-hand side includes the first P wave velocity, the second node density and the last wave velocity.
 
Bortfeld approximation then revised by Richard-Frasier (1976) and by Richard-Aki (1980). Approximation of Richard-Frasier is giving a simple equation because it is written in a clear three forms, namely the right-hand side includes the first P wave velocity, the second node density and the last wave velocity.
 +
 +
<math> R(\theta)= a\frac{\Delta Vp}{Vp}+ b \frac{\Delta \rho}{\rho}+ c \frac{\Delta Vs}{Vs} </math>
 +
 +
where <math> a = \frac{1}{2\cos^{2}\theta}, b = 0.5-\left [ 2\left ( \frac{Vs}{Vp} \right )^{2}\sin^{2}\theta \right ], c = -4\left ( \frac{Vs}{Vp} \right )^{2}\sin^{2}\theta </math>
 +
 +
and <math> \rho = \frac{\rho_2+\rho_1}{2}, \Delta \rho = \rho_2 - \rho_1 </math>
 +
    <math> Vp = \frac{Vp_2+Vp_1}{2}, \Delta Vp = Vp_2 - Vp_1 </math>
 +
    <math> Vs = \frac{Vs_2+Vs_1}{2}, \Delta Vs = Vs_2 - Vs_1 </math>
 +
    <math> \theta = \frac{\theta_2+\theta_1}{2} </math>
 +
    
'''c) Hilterman (1983)'''
 
'''c) Hilterman (1983)'''

Navigation menu