Changes

Jump to navigation Jump to search
189 bytes added ,  13:45, 10 September 2015
Line 49: Line 49:  
where Pc is the capillary pressure, sigma is the interfacial tension, thetas is the contact angle between the wetting fluid and the solid surface, and r is the capillary (pore throat) radius.<ref name=Vavra />
 
where Pc is the capillary pressure, sigma is the interfacial tension, thetas is the contact angle between the wetting fluid and the solid surface, and r is the capillary (pore throat) radius.<ref name=Vavra />
   −
The volume of water remaining at a given height in a reservoir is a function of the balance of capillary forces pulling the water up from the hydrocarbon-water interface and the force of gravity acting together with the density contrast between the reservoir fluids, acting to pull the water down (Arps, 1964). Thus, a given part of the pore space within the hydrocarbon leg can contain both hydrocarbons and water. The fraction (percentage) of water to total fluid volume is termed the water saturation.
+
The volume of water remaining at a given height in a reservoir is a function of the balance of capillary forces pulling the water up from the hydrocarbon-water interface and the force of gravity acting together with the density contrast between the reservoir fluids, acting to pull the water down.<ref>Arps, J. J., 1964, [http://archives.datapages.com/data/bulletns/1961-64/data/pg/0048/0002/0150/0157.htm Engineering concepts useful in oil finding]: AAPG Bulletin, v. 48, no. 2, p. 157–165.</ref> Thus, a given part of the pore space within the hydrocarbon leg can contain both hydrocarbons and water. The fraction (percentage) of water to total fluid volume is termed the water saturation.
    
For an oil field, the capillary-bound water comprises a continuous column of water within the oil leg, which will have a hydrostatic pressure gradient controlled by the water density. The oil is located in the remaining pore space as a continuous phase and will have a pressure gradient controlled by the (lower) oil density ([[:File:Mem91BuoyancyForcesFig26.jpg|Figure 3]]). Although oil and water can coexist in the same localized volume of rock, the pressures acting on the two fluids are different. The difference in pressure between the oil and water phases increases with height above the free-water level. The free-water level is the level at which the water-hydrocarbon interface would theoretically stand in a large open hole drilled through the oil column (Schowalter, 1979). In this situation, only gravity and buoyancy forces control the fluid distribution in the borehole.
 
For an oil field, the capillary-bound water comprises a continuous column of water within the oil leg, which will have a hydrostatic pressure gradient controlled by the water density. The oil is located in the remaining pore space as a continuous phase and will have a pressure gradient controlled by the (lower) oil density ([[:File:Mem91BuoyancyForcesFig26.jpg|Figure 3]]). Although oil and water can coexist in the same localized volume of rock, the pressures acting on the two fluids are different. The difference in pressure between the oil and water phases increases with height above the free-water level. The free-water level is the level at which the water-hydrocarbon interface would theoretically stand in a large open hole drilled through the oil column (Schowalter, 1979). In this situation, only gravity and buoyancy forces control the fluid distribution in the borehole.

Navigation menu