| BLTN13190fig5.jpg|{{figure number|5}}(A) Paleogeographic reconstruction of the Late Cretaceous Last Chance and Vernal delta systems of the Ferron Sandstone Member of the Mancos Shale in present-day Utah (after Cotter, 1976; used with permission of Brigham Young University). The location of the Deveugle et al. (2011) model (Figure 5D) and a regional cross section (Figure 5B) are highlighted. (B) Schematic regional cross section through the Last Chance delta system of the Ferron Sandstone Member and its eight-component shallow-marine tongues (termed “pararasequence sets,” using the nomenclature of Deveugle et al., 2011, and numbered PSS1 to PSS8), from southwest (paleolandward) to northeast (paleoseaward) (after Anderson and Ryer, 2004; used with permission of AAPG). (C) Detailed cross section through the lowermost shallow-marine tongues (termed “parasequences,” using the nomenclature of Deveugle et al., 2011, and forming PSS1 in Figure 5B) and associated coastal-plain strata (after Garrison and Van den Bergh, 2004; used with permission of AAPG). The tongue is subdivided into constituent parasequences (after Deveugle et al., 2011). Parasequence 1.6 is modeled in this study. (D) Distribution of facies-association belts at the top of parasequence 1.6, in the Deveugle et al. (2011) model area in the Ivie Creek amphitheater. The area of the model constructed in this study (Figures 7–10) lies within the dashed lines. | | BLTN13190fig5.jpg|{{figure number|5}}(A) Paleogeographic reconstruction of the Late Cretaceous Last Chance and Vernal delta systems of the Ferron Sandstone Member of the Mancos Shale in present-day Utah (after Cotter, 1976; used with permission of Brigham Young University). The location of the Deveugle et al. (2011) model (Figure 5D) and a regional cross section (Figure 5B) are highlighted. (B) Schematic regional cross section through the Last Chance delta system of the Ferron Sandstone Member and its eight-component shallow-marine tongues (termed “pararasequence sets,” using the nomenclature of Deveugle et al., 2011, and numbered PSS1 to PSS8), from southwest (paleolandward) to northeast (paleoseaward) (after Anderson and Ryer, 2004; used with permission of AAPG). (C) Detailed cross section through the lowermost shallow-marine tongues (termed “parasequences,” using the nomenclature of Deveugle et al., 2011, and forming PSS1 in Figure 5B) and associated coastal-plain strata (after Garrison and Van den Bergh, 2004; used with permission of AAPG). The tongue is subdivided into constituent parasequences (after Deveugle et al., 2011). Parasequence 1.6 is modeled in this study. (D) Distribution of facies-association belts at the top of parasequence 1.6, in the Deveugle et al. (2011) model area in the Ivie Creek amphitheater. The area of the model constructed in this study (Figures 7–10) lies within the dashed lines. |
| BLTN13190fig6.jpg|{{figure number|6}}(A) Interpreted line drawing of clinoforms in parasequence 1.6 at the Junction Point section of Ivie Creek amphitheater (Figure 5D) (modified after Forster et al., 2004). Each clinoform bounds a mouth bar and equivalent delta-front deposits. Data from 104 clinoforms were collected to condition the clinoform-modeling algorithm. Frequency distributions of values measured from outcrop data for (B) clinoform length ([[:File:BLTN13190fig4.jpg|Figure 4D]]), and (C) clinoform spacing ([[:File:BLTN13190fig4.jpg|Figure 4D]]), which are used as input parameters in the clinoform-modeling algorithm (Table 2). | | BLTN13190fig6.jpg|{{figure number|6}}(A) Interpreted line drawing of clinoforms in parasequence 1.6 at the Junction Point section of Ivie Creek amphitheater (Figure 5D) (modified after Forster et al., 2004). Each clinoform bounds a mouth bar and equivalent delta-front deposits. Data from 104 clinoforms were collected to condition the clinoform-modeling algorithm. Frequency distributions of values measured from outcrop data for (B) clinoform length ([[:File:BLTN13190fig4.jpg|Figure 4D]]), and (C) clinoform spacing ([[:File:BLTN13190fig4.jpg|Figure 4D]]), which are used as input parameters in the clinoform-modeling algorithm (Table 2). |