Changes

Jump to navigation Jump to search
no edit summary
Line 43: Line 43:  
Finite difference methods can provide very accurate results even in the most complex media. These methods provide exact numerical solutions and can include all wave phenomena, such as diffractions, multiples, and ground roll. The only limitations on finite difference methods are imposed by computing time, which is high in two dimensions and very high in three dimensions. This effectively limits grid size and hence the resolution obtainable. However, these are still the methods of choice for highly faulted complex models for which amplitude accuracy is important.
 
Finite difference methods can provide very accurate results even in the most complex media. These methods provide exact numerical solutions and can include all wave phenomena, such as diffractions, multiples, and ground roll. The only limitations on finite difference methods are imposed by computing time, which is high in two dimensions and very high in three dimensions. This effectively limits grid size and hence the resolution obtainable. However, these are still the methods of choice for highly faulted complex models for which amplitude accuracy is important.
   −
Often, the largest limiting factor on the accuracy of a forward model is not the method chosen to solve the problem, but rather the inappropriate use of one- or two-dimensional models of the geology when two- or three-dimensional models are necessary. The controlling factor for the model dimension is not the dimension of the data but rather the complexity of the geology. The presence of appreciable dip requires the use of two- or three-dimensional models. The presence of out-of-plane structures or dip requires the use of three-dimensional modeling. Failure to use models of the correct dimension can give rise to appreciable traveltime and amplitude error, as well as missing or misinterpreted arrivals.
+
Often, the largest limiting factor on the accuracy of a forward model is not the method chosen to solve the problem, but rather the inappropriate use of one- or two-dimensional models of the geology when two- or three-dimensional models are necessary. The controlling factor for the model dimension is not the dimension of the data but rather the complexity of the geology. The presence of appreciable [[dip]] requires the use of two- or three-dimensional models. The presence of out-of-plane structures or dip requires the use of three-dimensional modeling. Failure to use models of the correct dimension can give rise to appreciable traveltime and amplitude error, as well as missing or misinterpreted arrivals.
    
==See also==
 
==See also==

Navigation menu