Changes

Jump to navigation Jump to search
113 bytes added ,  18:47, 11 April 2019
no edit summary
Line 10: Line 10:  
The Parana Continental Basaltic Province covers an area of 917,000 km² and has a volume of 450,000 km³.<ref name=Frank_2009>Frank, H. T., M. E. B. Gomes, and M. L. L. Formoso, 2009, Review of the areal extent and the volume of the Serra Geral Formation, Parana Basin, South America: Pesquisa em Geociências, v. 36, p. 49–57.</ref> It is composed mostly (90% of volume) by basaltic and andesitic basalts rocks with a tholeiitic affinity. Acidic rocks occur locally in the upper volcanic pile. Chemically the basalts were divided in two groups based in the TiO2 contents: The first group occurs dominantly in southern areas and has TiO2 lower than 2 wt.%, the second group has high TiO2 (>2%) and is dominant in the northern portion of the Parana Basin.<ref name=Bellieni_1984>Bellieni, G., P. Comin-Chiaramonti, L. S. Marques, A. J. Melfi, E. M. Picirillo, A. J. R. Nardy, and A. Roisenberg,1984, High- and Low Ti flood basalts from the Paran_a plateau (Brazil): petrogenetic and geochemical aspects bearing on their mantle origin: Neues Jahrb. für Mineral. Abh, v. 150, p. 272–306.</ref><ref name=Mantovani_1985>Mantovani, M. S. M., L. S. Marques, M. A. De Sousa, L. Civetta, L. Atalla, and F. Innocenti, 1985, Trace element and strontium isotope constraints on the origin and evolution of Parana continental flood basalts of Santa Catarina State, southern Brazil: J. Petrol., v. 26, p. 187–209.</ref> These two groups of basaltic rocks were sub-divided in six magma types:<ref name=Peate_1992>Peate, D. W., C. J. Hawkeswort, and M. S. M. Mantovani, 1992, Chemical stratigraphy of the Parana lavas (South America): classification of magma types and their spatial distribution: Bull. Volcanol, v. 55, p. 119–139.</ref>  Gramado, Esmeralda and Urubici (Ti/Y<300) in the south, and Pitanga, Paranapanema and Ribeira (Ti/Y>300) in the northern magmas.  
 
The Parana Continental Basaltic Province covers an area of 917,000 km² and has a volume of 450,000 km³.<ref name=Frank_2009>Frank, H. T., M. E. B. Gomes, and M. L. L. Formoso, 2009, Review of the areal extent and the volume of the Serra Geral Formation, Parana Basin, South America: Pesquisa em Geociências, v. 36, p. 49–57.</ref> It is composed mostly (90% of volume) by basaltic and andesitic basalts rocks with a tholeiitic affinity. Acidic rocks occur locally in the upper volcanic pile. Chemically the basalts were divided in two groups based in the TiO2 contents: The first group occurs dominantly in southern areas and has TiO2 lower than 2 wt.%, the second group has high TiO2 (>2%) and is dominant in the northern portion of the Parana Basin.<ref name=Bellieni_1984>Bellieni, G., P. Comin-Chiaramonti, L. S. Marques, A. J. Melfi, E. M. Picirillo, A. J. R. Nardy, and A. Roisenberg,1984, High- and Low Ti flood basalts from the Paran_a plateau (Brazil): petrogenetic and geochemical aspects bearing on their mantle origin: Neues Jahrb. für Mineral. Abh, v. 150, p. 272–306.</ref><ref name=Mantovani_1985>Mantovani, M. S. M., L. S. Marques, M. A. De Sousa, L. Civetta, L. Atalla, and F. Innocenti, 1985, Trace element and strontium isotope constraints on the origin and evolution of Parana continental flood basalts of Santa Catarina State, southern Brazil: J. Petrol., v. 26, p. 187–209.</ref> These two groups of basaltic rocks were sub-divided in six magma types:<ref name=Peate_1992>Peate, D. W., C. J. Hawkeswort, and M. S. M. Mantovani, 1992, Chemical stratigraphy of the Parana lavas (South America): classification of magma types and their spatial distribution: Bull. Volcanol, v. 55, p. 119–139.</ref>  Gramado, Esmeralda and Urubici (Ti/Y<300) in the south, and Pitanga, Paranapanema and Ribeira (Ti/Y>300) in the northern magmas.  
   −
[[file:Parana-Etendeka_2.jpg|400px|thumb|{{figure number|2}}Distribution of magmatic and sedimentary rocks of the Parana Basin.<ref name=Rossetti_2014 />.]]
+
[[file:Parana-Etendeka_2.jpg|300px|thumb|{{figure number|2}}Distribution of magmatic and sedimentary rocks of the Parana Basin.<ref name=Rossetti_2014 />.]]
   −
Acidic rocks are characterized by high crystallization temperatures. In the Paraná Basin, temperatures obtained by the coexisting pyroxenes method are 1,030 ± 38ºC:<ref name=Bellieni_1984 />. Chemically the acidic rocks are also divided in two groups<ref name=Bellieni_1984 /><ref name=Peate_1997>Peate, D.W., 1997. The Parana-Etendeka province. In: Mahoney, J.J., Coffin, M. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism: Geophysical Monograph Series, vol. 100. American Geophysical Union, pp. 217e245.</ref>
+
Acidic rocks are characterized by high crystallization temperatures. In the Paraná Basin, temperatures obtained by the coexisting pyroxenes method are 1,030 ± 38ºC:<ref name=Bellieni_1984 />. Chemically the acidic rocks are also divided in two groups<ref name=Bellieni_1984 /><ref name=Peate_1997>Peate, D. W., 1997, The Parana-Etendeka province, ''in'' J. J. Mahoney, and M. Coffin, eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Volcanism: American Geophysical Union Geophysical Monograph 100, p. 217–245.</ref>
# Palmas type, dacitic and rhyolitic rocks with low TiO2 and low contents of incompatible elements, dominant in the south of Parana Basin and is sub-divided in 5 sub-groups based on chemical characteristics:<ref name=Peate_1992 /><ref name=Nardy_2008>Nardy A.J.R., Machado F.B., Oliveira M.A.F. 2008. As rochas vulcânicas mesozoicas ácidas da Bacia do Paraná: litoestratigrafia e considerações geoquímicas-estratigráficas. Revista Brasileira de Geociências, 38(1):178-195.</ref> Caxias do Sul, Santa Maria, Anita Garibaldi, Clevelandia and Jacui.  
+
# Palmas type, dacitic and rhyolitic rocks with low TiO2 and low contents of incompatible elements, dominant in the south of Parana Basin and is sub-divided in 5 sub-groups based on chemical characteristics:<ref name=Peate_1992 /><ref name=Nardy_2008>Nardy, A. J. R., F. B. Machado, and M. A .F. Oliveira, 2008, As rochas vulcânicas mesozoicas ácidas da Bacia do Paraná: litoestratigrafia e considerações geoquímicas-estratigráficas: Revista Brasileira de Geociências, v. 38, no. 1, p. 178–195.</ref> Caxias do Sul, Santa Maria, Anita Garibaldi, Clevelandia and Jacui.  
 
# Chapeco Type, porphyritic trachytes with high-TiO2, Ba, P, Zr and Sr. Present in the north and middle portions of the basin and is sub-divided in 3 sub-groups: Ourinhos, Guarapuava<ref name=Peate_1997 /> and Tamanara.<ref name=Nardy_2008 />
 
# Chapeco Type, porphyritic trachytes with high-TiO2, Ba, P, Zr and Sr. Present in the north and middle portions of the basin and is sub-divided in 3 sub-groups: Ourinhos, Guarapuava<ref name=Peate_1997 /> and Tamanara.<ref name=Nardy_2008 />
   −
The age of magmatism in the Serra Geral Formation is Early Cretaceous. The volcanic rocks are slightly older in the south portion ranging from 131,4 ± 1,6 to 132,9 Ma, becoming younger in middle (129,9 ± 0,1 Ma ) and north (131,9 ± 0,9 Ma ).<ref name=Renne_1992>Renne, P. R., Ernesto, M., Pacca, I.G., Coe, R.S., Glen, J.M., Prevot, M. & Perrin M. 1992. The age of the Paraná Flood Volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science, 258: 975- 979</ref> The duration of the main phase of the volcanism was <1.2 My<ref name=Renne_1992 /> (Continental Basaltic Provinces are known to display a variety of lava flow morphologies).  
+
The age of magmatism in the Serra Geral Formation is Early Cretaceous. The volcanic rocks are slightly older in the south portion ranging from 131,4 ± 1,6 to 132,9 Ma, becoming younger in middle (129,9 ± 0,1 Ma ) and north (131,9 ± 0,9 Ma ).<ref name=Renne_1992>Renne, P. R., M. Ernesto, I. G. Pacca, R. S. Coe, J. M. Glen, M. Prevot, and M. Perrin, 1992, The age of the Paraná Flood Volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary: Science, v. 258, p. 975–979</ref> The duration of the main phase of the volcanism was <1.2 My<ref name=Renne_1992 /> (Continental Basaltic Provinces are known to display a variety of lava flow morphologies).  
   −
Furthermore, studies based in the morphology of different magma types and the facies architecture<ref name=Lima_2012>Lima, E.F., Waichel, B.L., Rossetti, L.M.M., Viana, A.R., Scherer, C.M., Bueno, G.V., Dutra, G., 2012. Morphological and petrographic patterns of the pahoehoe and 0a0_a flows of the Serra Geral Formation in the Torres Syncline.</ref><ref name=Waichel_2012>Waichel, B.L., Lima, E.F., Viana, A.R., Scherer, C.M., Bueno, G.V., Dutra, G., 2012. Stratigraphy and volcanic facies architecture of the Torres Syncline, Southern Brazil, and its role in understanding the Paran_a-Etendeka Continental Flood Basalt Province. J. Volcanol. Geotherm. Res. 216, 74e82.</ref><ref name=Rossetti_2014>Rossetti, L.M., Lima, E.F., Waichel, B.L., Scherer, C.M., Barreto, C.J., 2014. Stratigraphical framework of basaltic lavas in Torres Syncline Main Valley, Southern Brazil. Journal of South American Earth Sciences 56 (2014) 409-421 </ref> has helped the understanding the paleotopography, emplacement and volumetric flow rate of Parana Etendeka volcanism.
+
Furthermore, studies based in the morphology of different magma types and the facies architecture<ref name=Lima_2012>Lima, E. F., B. L .Waichel, L. M. M. Rossetti, A. R. Viana, C. M. Scherer, G. V. Bueno, and G. Dutra, 2012, Morphological and petrographic patterns of the pahoehoe and aa flows of the Serra Geral Formation in the Torres Syncline: Revista Brasileira de Geociências, v. 42, no. 4, p. 744–753.</ref><ref name=Waichel_2012>Waichel, B.L., E. F. Lima, A. R. Viana, C. M. Scherer, G. V. Bueno, and G. Dutra, 2012, Stratigraphy and volcanic facies architecture of the Torres Syncline, Southern Brazil, and its role in understanding the Paran_a-Etendeka Continental Flood Basalt Province: J. Volcanol. Geotherm. Res., v. 216, p. 74–82.</ref><ref name=Rossetti_2014>Rossetti, L. M., E. F. Lima, B. L. Waichel, C. M. Scherer, and C. J. Barreto, 2014, Stratigraphical framework of basaltic lavas in Torres Syncline Main Valley, Southern Brazil: Journal of South American Earth Sciences, v. 56, p. 409–421 </ref> has helped the understanding the paleotopography, emplacement and volumetric flow rate of Parana Etendeka volcanism.
    
==References==
 
==References==
 
{{reflist}}
 
{{reflist}}

Navigation menu