Difference between revisions of "Pore-fluid interaction"

From AAPG Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
 
  | part    = Predicting the occurrence of oil and gas traps
 
  | part    = Predicting the occurrence of oil and gas traps
 
  | chapter = Predicting reservoir system quality and performance
 
  | chapter = Predicting reservoir system quality and performance
  | frompg  = 9-1
+
  | frompg  = 9-26
  | topg    = 9-156
+
  | topg    = 9-26
 
  | author  = Dan J. Hartmann, Edward A. Beaumont
 
  | author  = Dan J. Hartmann, Edward A. Beaumont
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch09/ch09.htm
 
  | link    = http://archives.datapages.com/data/specpubs/beaumont/ch09/ch09.htm
Line 33: Line 33:
 
[[Category:Predicting the occurrence of oil and gas traps]]  
 
[[Category:Predicting the occurrence of oil and gas traps]]  
 
[[Category:Predicting reservoir system quality and performance]]
 
[[Category:Predicting reservoir system quality and performance]]
 +
[[Category:Treatise Handbook 3]]

Latest revision as of 16:31, 4 April 2022

Pore–fluid interaction determines the amount and rate of hydrocarbon recovery. Reservoir pore throat radius, buoyancy pressure, and fluid properties are the main elements controlling pore–fluid interaction. Since direct observation of pore–fluid interaction in the reservoir is impossible at present, capillary pressure and relative permeability analysis of rocks yields the most insight into the behavior of fluids in a particular pore system.


See also

External links

find literature about
Pore-fluid interaction